Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2013, Volume 25, Number 4, Pages 44–64 (Mi mm3351)  

This article is cited in 1 scientific paper (total in 1 paper)

On the local stability of Nash equilibria in the model of endogenous coalition formation

S. A. Vartanov, Y. V. Sosina

Lomonosov Moscow State University

Abstract: We study a model of endogenous coalition formation by players (agents) from large societies. Each agent’s preferences are described by his ideal point, while the agents are distributed on the ideal points set according to some rule. The coalition policy is determined as a median of its members ideal points distribution. The payoff of an agent depends on the distance between his ideal point and the policy of the coalition he joins and on the size of this coalition. We assume that the agents distribution has a quasi-concave density function. We find sufficient and necessary conditions for the Nash equilibria to be stable in regard to local unification.

Keywords: coalition formation, Nash equilibrium, local stability.

Full text: PDF file (426 kB)

Bibliographic databases:
UDC: 519.833.2, 519.833.5

Citation: S. A. Vartanov, Y. V. Sosina, “On the local stability of Nash equilibria in the model of endogenous coalition formation”, Matem. Mod., 25:4 (2013), 44–64

Citation in format AMSBIB
\Bibitem{VarSos13}
\by S.~A.~Vartanov, Y.~V.~Sosina
\paper On the local stability of Nash equilibria in the model of endogenous coalition formation
\jour Matem. Mod.
\yr 2013
\vol 25
\issue 4
\pages 44--64
\mathnet{http://mi.mathnet.ru/mm3351}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3114884}


Linking options:
  • http://mi.mathnet.ru/eng/mm3351
  • http://mi.mathnet.ru/eng/mm/v25/i4/p44

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Savvateev, “Migratsionno-ustoichivaya organizatsiya odnomernogo mira: teorema suschestvovaniya resheniya”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 6:2 (2013), 57–68  mathnet
  • Математическое моделирование
    Number of views:
    This page:196
    Full text:66
    First page:21

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021