RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2013, Volume 25, Number 5, Pages 55–66 (Mi mm3362)  

This article is cited in 3 scientific papers (total in 3 papers)

Bicompact scheme for linear inhomogeneous transport equation

E. N. Aristovaab, D. F. Baydina, B. V. Rogovab

a Keldysh Institute of Applied Mathematics RAS
b Moscow Institute of Physics and Technology

Abstract: Generalization of bicompact finite-difference schemes, constructed for homogeneous linear transport equation, has been carried out in the case of inhomogeneous transport equation. This equation describes transport of particles or radiation in media. Bicompact scheme is constructed by means of method of lines for initial unknown function and additional unknown mesh function defined as the integral average of decision function over space cells. Comparison of the method calculation results with the conservative-characteristic method results has been done. The last method might be assigned to bicompact schemes too although it is based on the idea of true distribution of coming fluxes over cell edges.

Keywords: transport equation, finite-difference schemes, bicompact schemes, conservative schemes, Runge–Kutta methods, redistribution of fluxes.

Full text: PDF file (313 kB)
References: PDF file   HTML file

English version:
Mathematical Models and Computer Simulations, 2013, 5:6, 586–594

Bibliographic databases:

Received: 11.04.2012

Citation: E. N. Aristova, D. F. Baydin, B. V. Rogov, “Bicompact scheme for linear inhomogeneous transport equation”, Matem. Mod., 25:5 (2013), 55–66; Math. Models Comput. Simul., 5:6 (2013), 586–594

Citation in format AMSBIB
\Bibitem{AriBayRog13}
\by E.~N.~Aristova, D.~F.~Baydin, B.~V.~Rogov
\paper Bicompact scheme for linear inhomogeneous transport equation
\jour Matem. Mod.
\yr 2013
\vol 25
\issue 5
\pages 55--66
\mathnet{http://mi.mathnet.ru/mm3362}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3114903}
\transl
\jour Math. Models Comput. Simul.
\yr 2013
\vol 5
\issue 6
\pages 586--594
\crossref{https://doi.org/10.1134/S2070048213060033}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925292329}


Linking options:
  • http://mi.mathnet.ru/eng/mm3362
  • http://mi.mathnet.ru/eng/mm/v25/i5/p55

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. N. Aristova, “Bicompact scheme for linear inhomogeneous transport equation in a case of a big optical width”, Math. Models Comput. Simul., 6:3 (2014), 227–238  mathnet  crossref  mathscinet  elib
    2. E. N. Aristova, S. V. Martynenko, “Bicompact Rogov schemes for the multidimensional inhomogeneous linear transport equation at large optical depths”, Comput. Math. Math. Phys., 53:10 (2013), 1499–1511  mathnet  crossref  crossref  isi  elib  elib
    3. E. N. Aristova, M. I. Stoynov, “Bicompact schemes of solving an stationary transport equation by quasidiffusion method”, Math. Models Comput. Simul., 8:6 (2016), 615–624  mathnet  crossref  elib
  • Number of views:
    This page:321
    Full text:74
    References:34
    First page:27

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020