RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2013, Volume 25, Number 10, Pages 3–18 (Mi mm3386)  

This article is cited in 2 scientific papers (total in 2 papers)

Bicompact scheme for linear inhomogeneous transport equation in a case of a big optical width

E. N. Aristovaab

a Keldysh Institute of Applied Mathematics RAS
b Moscow Institute of Physics and Technology

Abstract: It have been considered bicompact Rogov schemes for solving linear inhomogeneous transport equation which is adequate for description of particle transport in media. New approach for energy dependence of distribution function on a base of Lebesque averaging methods leads to broadening of ranges in which absorption coefficient should be vary in comparison with the multigroup approach. New method of solution monotonization has been suggested for numerical solving problems containing regions with big optical widths. This method considerably improve accuracy of bicompact schemes in a case of solution nondifferentiability and tends it to the accuracy of conservative-characteristic schemes.

Keywords: bicompact schemes, transport equation, opacity coefficient, optical width, lebesgue averaging method.

Full text: PDF file (477 kB)
References: PDF file   HTML file

English version:
Mathematical Models and Computer Simulations, 2014, 6:3, 227–238

Bibliographic databases:

Received: 18.06.2012

Citation: E. N. Aristova, “Bicompact scheme for linear inhomogeneous transport equation in a case of a big optical width”, Matem. Mod., 25:10 (2013), 3–18; Math. Models Comput. Simul., 6:3 (2014), 227–238

Citation in format AMSBIB
\Bibitem{Ari13}
\by E.~N.~Aristova
\paper Bicompact scheme for linear inhomogeneous transport equation in a case of a big optical width
\jour Matem. Mod.
\yr 2013
\vol 25
\issue 10
\pages 3--18
\mathnet{http://mi.mathnet.ru/mm3386}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3220566}
\elib{http://elibrary.ru/item.asp?id=21276807}
\transl
\jour Math. Models Comput. Simul.
\yr 2014
\vol 6
\issue 3
\pages 227--238
\crossref{https://doi.org/10.1134/S2070048214030028}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925953103}


Linking options:
  • http://mi.mathnet.ru/eng/mm3386
  • http://mi.mathnet.ru/eng/mm/v25/i10/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. N. Aristova, S. V. Martynenko, “Bicompact Rogov schemes for the multidimensional inhomogeneous linear transport equation at large optical depths”, Comput. Math. Math. Phys., 53:10 (2013), 1499–1511  mathnet  crossref  crossref  isi  elib  elib
    2. E. N. Aristova, M. I. Stoynov, “Bicompact schemes of solving an stationary transport equation by quasidiffusion method”, Math. Models Comput. Simul., 8:6 (2016), 615–624  mathnet  crossref  elib
  • Number of views:
    This page:267
    Full text:63
    References:53
    First page:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020