RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2004, Volume 16, Number 2, Pages 69–86 (Mi mm345)  

This article is cited in 1 scientific paper (total in 1 paper)

2D and 3D simulation of Rayleigh–Taylor instability in cylindrical and spherical geometries

N. N. Anuchina, V. I. Volkov, N. S. Eskov, O. S. Ilyutina, O. M. Kozyrev

Russian Federal Nuclear Center E. I. Zababakhin All-Russian Scientific Research Institute of Technical Physics

Abstract: Numerical simulations for cylindrical and spherical geometries are presented, which study linear and nonlinear stages of evolution of small perturbations at the interface of two incompressible, non-viscous, nonheat-conducting liquids being under effect of Rayleigh–Taylor instability. Initial perturbations of the interface are considered for two cases: when the flow is described with two and three spatial variables. Results of the numerical simulations of the linear evolution stage for the small perturbations are in good agreement with the analytical laws of small single-mode perturbation evolution, derived in linearized formulation (basic solution is at rest) for cylindrical and spherical geometries. Effect of dimensionality of space and geometry (plane, cylindrical or spherical) on the evolution of perturbations is studied for nonlinear stage. Basic characteristics of the difference methods implemented in MAH and MAH-3 software packages used for numerical studies are briefly described.

Full text: PDF file (1781 kB)
References: PDF file   HTML file

Bibliographic databases:

Received: 12.05.2003

Citation: N. N. Anuchina, V. I. Volkov, N. S. Eskov, O. S. Ilyutina, O. M. Kozyrev, “2D and 3D simulation of Rayleigh–Taylor instability in cylindrical and spherical geometries”, Matem. Mod., 16:2 (2004), 69–86

Citation in format AMSBIB
\Bibitem{AnuVolEsk04}
\by N.~N.~Anuchina, V.~I.~Volkov, N.~S.~Eskov, O.~S.~Ilyutina, O.~M.~Kozyrev
\paper 2D and 3D simulation of Rayleigh--Taylor instability in cylindrical and spherical geometries
\jour Matem. Mod.
\yr 2004
\vol 16
\issue 2
\pages 69--86
\mathnet{http://mi.mathnet.ru/mm345}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2060487}
\zmath{https://zbmath.org/?q=an:1109.76322}


Linking options:
  • http://mi.mathnet.ru/eng/mm345
  • http://mi.mathnet.ru/eng/mm/v16/i2/p69

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. G. Anuchin, N. N. Anuchina, V. I. Volkov, V. A. Gordeichuk, N. S. Eskov, O. M. Kozyrev, “Metodika rascheta mestnykh gidravlicheskikh soprotivlenii dlya dvumernoi i trekhmernoi geometrii kanala”, Matem. modelirovanie, 18:6 (2006), 109–126  mathnet  zmath
  • Математическое моделирование
    Number of views:
    This page:571
    Full text:215
    References:35
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019