RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2015, Volume 27, Number 1, Pages 113–130 (Mi mm3567)  

This article is cited in 1 scientific paper (total in 1 paper)

Simulation of nonlinear deformation and fracture of heterogeneous media based on the generalized method of integral representations

V. A. Petushkov

Blagonravov Mechanical Engineering and Research Institute of RAS, Moscow

Abstract: Development of BIEM (boundary integral equation method) for solving of nonlinear 3D problems of thermal elastic-plastic deformation and fracture of heterogeneous complex shapes bodies with changing boundary conditions in the process of loading is proposed. Collocation approximation to the solution of equations is based on the fundamental solution of the Kelvin–Somalian and flow theory of elastoplastic media with anisotropic hardening. The cases of complex, composite thermo-mechanical loading of piecewise homogeneous media, including in the presence of local zones of singular perturbation solutions — randomly oriented defects such as cracks are considered. Solutions for practical importance of 3D nonlinear problems are obtained using a previously developed method of discrete domains (DDBIEM).

Keywords: inhomogeneous 3D media, nonlinear deformation and fracture, BIEM, collocation approximation, subdomains method, mathematical modeling.

Full text: PDF file (708 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 539.3 + 519.6
Received: 09.01.2014

Citation: V. A. Petushkov, “Simulation of nonlinear deformation and fracture of heterogeneous media based on the generalized method of integral representations”, Matem. Mod., 27:1 (2015), 113–130

Citation in format AMSBIB
\Bibitem{Pet15}
\by V.~A.~Petushkov
\paper Simulation of nonlinear deformation and fracture of heterogeneous media based on the generalized method of integral representations
\jour Matem. Mod.
\yr 2015
\vol 27
\issue 1
\pages 113--130
\mathnet{http://mi.mathnet.ru/mm3567}
\elib{http://elibrary.ru/item.asp?id=23421468}


Linking options:
  • http://mi.mathnet.ru/eng/mm3567
  • http://mi.mathnet.ru/eng/mm/v27/i1/p113

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Petushkov, “Izuchenie perekhodnykh protsessov v nelineino deformiruemykh sredakh na osnove integralnykh predstavlenii i metoda diskretnykh oblastei”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 21:1 (2017), 137–159  mathnet  crossref  elib
  • Математическое моделирование
    Number of views:
    This page:197
    Full text:66
    References:17
    First page:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019