RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2015, Volume 27, Number 8, Pages 32–46 (Mi mm3636)  

This article is cited in 1 scientific paper (total in 1 paper)

Monotonization of high accuracy bicompact scheme for stationary multidimensional transport equation

E. N. Aristovaab, B. V. Rogovab, A. V. Chikitkina

a Moscow Institute of Physics and Technology
b Keldysh Institute of Applied Mathematics RAS

Abstract: A variant of hybrid scheme for solving non-homogeneous stationary transport equation is constructed. A bicompact scheme of the fourth order approximation over all space variables and the first order approximation scheme from a set of short characteristic methods with interpolation over illuminated faces are chosen as a base. It is shown that the chosen first order approximation scheme is a scheme with minimal dissipation. Monotone scheme is constructed by continuous and homogeneous procedure in all mesh cells by keeping the fourth approximation order in domains where solution is smooth and maintaining high practical accuracy in a domain of discontinuity. Logical simplicity and homogeneity of suggested algorithm make this method well fitted for supercomputer calculations.

Keywords: transport equation, bicompact schemes, short characteristic method, monotonic schemes, minimal dissipation, hybrid schemes.

Full text: PDF file (786 kB)
References: PDF file   HTML file

English version:
Mathematical Models and Computer Simulations, 2016, 8:2, 108–117

Bibliographic databases:

UDC: 519.63
Received: 08.12.2014

Citation: E. N. Aristova, B. V. Rogov, A. V. Chikitkin, “Monotonization of high accuracy bicompact scheme for stationary multidimensional transport equation”, Matem. Mod., 27:8 (2015), 32–46; Math. Models Comput. Simul., 8:2 (2016), 108–117

Citation in format AMSBIB
\Bibitem{AriRogChi15}
\by E.~N.~Aristova, B.~V.~Rogov, A.~V.~Chikitkin
\paper Monotonization of high accuracy bicompact scheme for stationary multidimensional transport equation
\jour Matem. Mod.
\yr 2015
\vol 27
\issue 8
\pages 32--46
\mathnet{http://mi.mathnet.ru/mm3636}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3545180}
\elib{http://elibrary.ru/item.asp?id=24850092}
\transl
\jour Math. Models Comput. Simul.
\yr 2016
\vol 8
\issue 2
\pages 108--117
\crossref{https://doi.org/10.1134/S2070048216020022}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962668658}


Linking options:
  • http://mi.mathnet.ru/eng/mm3636
  • http://mi.mathnet.ru/eng/mm/v27/i8/p32

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. N. Aristova, B. V. Rogov, A. V. Chikitkin, “Optimal monotonization of a high-order accurate bicompact scheme for the nonstationary multidimensional transport equation”, Comput. Math. Math. Phys., 56:6 (2016), 962–976  mathnet  crossref  crossref  isi  elib
  • Математическое моделирование
    Number of views:
    This page:245
    Full text:77
    References:26
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020