RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2016, Volume 28, Number 1, Pages 107–116 (Mi mm3693)  

This article is cited in 4 scientific papers (total in 4 papers)

3D hexagonal parallel code QuDiff for fast reactor critical parameters calculations

D. F. Baydina, E. N. Aristovaba

a Keldysh Institute of Applied Mathematics RAS, Moscow
b Moscow Institute of Physics and Technology, Mocsow Region

Abstract: Applicable for high-performance computational environments parallel code QuDiff for fast reactor critical parameters calculations has been implemented based on a sequential version. A multigroup transport equation calculation method was build upon V.Ya.Goldin's quasi-diffusion method. For efficient algorithm construction it was suggested to use all the reactor assembly symmetries, possible for self-adjustable neutron-nuclear regime of operation. MPI was applied as a parallel interface. Domain decomposition method was utilized. Pipelined parallelization of transport equation has been used for its consistency with quasi-diffusion system of equations parallelization. Calculations of 3D active zone model of the BN-800 type reactor capable of operating in self-adjustable neutron-nuclear regime showed that parallel code QuDiff is highly scalable. It is assumed to use most of the results of this work in dynamical numerical simulation of fast reactors' active zones.

Keywords: transport equation, quasi-diffusion method, parallel calculations.

Full text: PDF file (291 kB)
References: PDF file   HTML file

English version:
Mathematical Models and Computer Simulations, 2016, 8:4, 446–452

Received: 08.12.2014

Citation: D. F. Baydin, E. N. Aristova, “3D hexagonal parallel code QuDiff for fast reactor critical parameters calculations”, Matem. Mod., 28:1 (2016), 107–116; Math. Models Comput. Simul., 8:4 (2016), 446–452

Citation in format AMSBIB
\Bibitem{BayAri16}
\by D.~F.~Baydin, E.~N.~Aristova
\paper 3D hexagonal parallel code QuDiff for fast reactor critical parameters calculations
\jour Matem. Mod.
\yr 2016
\vol 28
\issue 1
\pages 107--116
\mathnet{http://mi.mathnet.ru/mm3693}
\elib{http://elibrary.ru/item.asp?id=25707614}
\transl
\jour Math. Models Comput. Simul.
\yr 2016
\vol 8
\issue 4
\pages 446--452
\crossref{https://doi.org/10.1134/S2070048216040025}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84978541159}


Linking options:
  • http://mi.mathnet.ru/eng/mm3693
  • http://mi.mathnet.ru/eng/mm/v28/i1/p107

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Chikitkin A.V., Rogov B.V., Aristova E.N., “High-order accurate bicompact schemes for solving the multidimensional inhomogeneous transport equation and their efficient parallel implementation”, Dokl. Math., 94:2 (2016), 517–522  crossref  mathscinet  zmath  isi  elib  scopus
    2. A. V. Chikitkin, B. V. Rogov, “Dva varianta parallelnoi realizatsii vysokotochnykh bikompaktnykh skhem dlya mnogomernogo neodnorodnogo uravneniya perenosa”, Preprinty IPM im. M. V. Keldysha, 2018, 177, 24 pp.  mathnet  crossref  elib
    3. B. V. Rogov, A. V. Chikitkin, “O skhodimosti i tochnosti metoda iteriruemoi priblizhennoi faktorizatsii operatorov mnogomernykh vysokotochnykh bikompaktnykh skhem”, Matem. modelirovanie, 31:12 (2019), 119–144  mathnet  crossref  elib
    4. G. O. Astafurov, D. A. Manichkin, “Postroenie kubaturnykh formul na sfere, soglasovannykh s pravilnoi geksagonalnoi reshetkoi”, Preprinty IPM im. M. V. Keldysha, 2019, 151, 16 pp.  mathnet  crossref
  • Математическое моделирование
    Number of views:
    This page:187
    Full text:64
    References:61
    First page:36

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020