RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2016, Volume 28, Number 5, Pages 24–31 (Mi mm3727)  

This article is cited in 4 scientific papers (total in 4 papers)

Numerical simulation of strongly nonequilibrium processes in magnetic materials based on the physical kinetics equations

S. A. Khilkovab, A. V. Ivanovbc, E. V. Zipunovaac

a Moscow Institute of Physics and Technology (SU), Dolgoprudny
b Keldysh Institue of Applied Mathematics RAS, Moscow
c KinTech Lab, Moscow

Abstract: Numerical simulation of magnetic materials play an important role in the development of various spintronics devices. The most common way to construct mathematical model of magnetic material is to base it on the system of Landau–Lifshitz equations. For example for derivation of Landau–Lifshitz–Bloch equation multiplicative approximation of the mean field was implicitly used. That approximation corresponds in the equilibrium state to the Curie–Weiss theory. In this paper it is showed that multiplicative approximation does not describe the remagnetization process correctly. The phenomenological model that takes nearest neighbour correlations into account not only allows to obtain the correct values of the critical temperature and mean exchange energy of a system but also qualitatively describes the strongly nonequilibrium remagnetization processes.

Keywords: Landau–Lifshitz equation; modeling of magnetic materials; kinetic equations.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation RFMEFI57614X0023


Full text: PDF file (361 kB)
References: PDF file   HTML file

English version:
Mathematical Models and Computer Simulations, 2016, 8:6, 703–708

Document Type: Article
UDC: 537.622.4
Received: 14.09.2015

Citation: S. A. Khilkov, A. V. Ivanov, E. V. Zipunova, “Numerical simulation of strongly nonequilibrium processes in magnetic materials based on the physical kinetics equations”, Matem. Mod., 28:5 (2016), 24–31; Math. Models Comput. Simul., 8:6 (2016), 703–708

Citation in format AMSBIB
\Bibitem{KhiIvaZip16}
\by S.~A.~Khilkov, A.~V.~Ivanov, E.~V.~Zipunova
\paper Numerical simulation of strongly nonequilibrium processes in magnetic materials based on the physical kinetics equations
\jour Matem. Mod.
\yr 2016
\vol 28
\issue 5
\pages 24--31
\mathnet{http://mi.mathnet.ru/mm3727}
\elib{http://elibrary.ru/item.asp?id=26414257}
\transl
\jour Math. Models Comput. Simul.
\yr 2016
\vol 8
\issue 6
\pages 703--708
\crossref{https://doi.org/10.1134/S2070048216060107}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84994850640}


Linking options:
  • http://mi.mathnet.ru/eng/mm3727
  • http://mi.mathnet.ru/eng/mm/v28/i5/p24

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Ivanov, S. A. Khilkov, “K voprosu o kineticheskom modelirovanii tsepochki fazovykh ostsillyatorov”, Preprinty IPM im. M. V. Keldysha, 2016, 130, 20 pp.  mathnet  crossref
    2. A. V. Ivanov, S. A. Khilkov, “Beta-approksimatsiya dvukhchastichnoi funktsii raspredeleniya pri opisanii tsepochek fazovykh ostsillyatorov”, Preprinty IPM im. M. V. Keldysha, 2017, 087, 19 pp.  mathnet  crossref
    3. E. V. Zipunova, A. V. Ivanov, “K voprosu o testirovanii programmnykh kompleksov dlya modelirovaniya magnetikov”, Preprinty IPM im. M. V. Keldysha, 2017, 098, 30 pp.  mathnet  crossref
    4. A. V. Ivanov, “Ispolzovanie biblioteki aiwlib na primere chislennogo modelirovaniya stokhasticheskogo rezonansa”, Preprinty IPM im. M. V. Keldysha, 2018, 089, 30 pp.  mathnet  crossref
  • Математическое моделирование
    Number of views:
    This page:189
    Full text:34
    References:24
    First page:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019