Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2017, Volume 29, Number 10, Pages 5–19 (Mi mm3895)  

This article is cited in 7 scientific papers (total in 7 papers)

Path coordinates in 3D path following problem

A.N. Kanatnikovab, W. Liua, S. B. Tkachevba

a Bauman Moscow State Technical University, Moscow
b Institute for Systems Analysis of RAS

Abstract: Two approaches to 3D path coordinates using in path following problem for aerial vehicles are proposed. The first one consists in reducing to two dimensional case by means of projection. The second one is based on introducing of an adapted frame in the target point. The choice of an adapted frame detects a complexity of the control synthesis algorithm. It is shown that the parallel transport frame, or Bishop frame, is most convenient.

Keywords: path following, path coordinates, adapted frame, stabilized control.

Funding Agency Grant Number
Russian Foundation for Basic Research 15-07-05489_а
15-07-06484_а


Full text: PDF file (346 kB)
References: PDF file   HTML file

English version:
Mathematical Models and Computer Simulations, 2018, 10:3, 265–275

Received: 09.02.2017

Citation: A.N. Kanatnikov, W. Liu, S. B. Tkachev, “Path coordinates in 3D path following problem”, Matem. Mod., 29:10 (2017), 5–19; Math. Models Comput. Simul., 10:3 (2018), 265–275

Citation in format AMSBIB
\Bibitem{KanLiuTka17}
\by A.N.~Kanatnikov, W.~Liu, S.~B.~Tkachev
\paper Path coordinates in 3D path following problem
\jour Matem. Mod.
\yr 2017
\vol 29
\issue 10
\pages 5--19
\mathnet{http://mi.mathnet.ru/mm3895}
\elib{https://elibrary.ru/item.asp?id=30060377}
\transl
\jour Math. Models Comput. Simul.
\yr 2018
\vol 10
\issue 3
\pages 265--275
\crossref{https://doi.org/10.1134/S2070048218030067}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048122557}


Linking options:
  • http://mi.mathnet.ru/eng/mm3895
  • http://mi.mathnet.ru/eng/mm/v29/i10/p5

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. D. Botkin, A. E. Golubev, V. L. Turova, “Aircraft guiding in windshear through differential game-based overload control”, IFAC PAPERSONLINE, 52:16 (2019), 706–711  crossref  isi
    2. A. E. Golubev, N. D. Botkin, A. P. Krishchenko, “Backstepping control of aircraft take-off in windshear”, IFAC PAPERSONLINE, 52:16 (2019), 712–717  crossref  isi  scopus
    3. A. E. Golubev, A. P. Krishchenko, N. V. Utkina, “Missile angle of attack tracking using integrator backstepping”, IFAC PAPERSONLINE, 52:16 (2019), 724–729  crossref  mathscinet  isi
    4. V T. Glazkov , A. E. Golubev, V A. Gorbunov , A. P. Krishchenko, “Control of quadcopter motion in the horizontal plane”, International Conference on Numerical Analysis and Applied Mathematics (Icnaam-2018), AIP Conf. Proc., 2116, eds. T. Simos, C. Tsitouras, Amer. Inst. Phys., 2019, 380003  crossref  isi
    5. A. E. Golubev, N. Thway, V A. Gorbunov , A. P. Krishchenko, V N. Utkina, “Construction of quadrocopter programmed motion in a flat labyrinth”, International Conference on Numerical Analysis and Applied Mathematics (Icnaam-2018), AIP Conf. Proc., 2116, eds. T. Simos, C. Tsitouras, Amer. Inst. Phys., 2019, 380004  crossref  mathscinet  isi
    6. Yu. G. Kokunko, D. V. Krasnov, A. V. Utkin, “Dva metoda sinteza nablyudatelei sostoyaniya i vozmuschenii dlya bespilotnogo letatelnogo apparata”, Probl. upravl., 1 (2020), 3–16  mathnet  crossref
    7. Yu. G. Kokunko, S. A. Krasnova, “Dva podkhoda k sintezu invariantnoi sistemy slezheniya dlya bespilotnogo letatelnogo apparata”, UBS, 85 (2020), 113–142  mathnet  crossref
  • Математическое моделирование
    Number of views:
    This page:213
    Full text:77
    References:19
    First page:4

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021