Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2018, Volume 30, Number 5, Pages 76–98 (Mi mm3969)  

On the monotonicity of the CABARET scheme approximating a scalar conservation law with alternating characteristic field

N. A. Zyuzinaab, O. A. Kovyrkinaa, V. V. Ostapenkoab

a Lavrentyev Institute of Hydrodynamics SB RAS
b Novosibirsk State University

Abstract: The monotonicity of the CABARET scheme approximating quasi-linear scalar conservation law with a convex flux is analyzed. Monotonicity conditions for this scheme are obtained in the areas where propagation velocity of characteristics has constant sign as well as in the areas of sonic lines, sonic bands and shock waves on which propagation velocity of characteristics of approximated divergent equation changes sign. Test computations are presented that illustrate these properties of the CABARET scheme.

Keywords: CABARET finite difference scheme, scalar conservation law with convex flux, sonic lines, monotonicity.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-01-00333_а


Full text: PDF file (467 kB)
References: PDF file   HTML file
Received: 06.03.2017

Citation: N. A. Zyuzina, O. A. Kovyrkina, V. V. Ostapenko, “On the monotonicity of the CABARET scheme approximating a scalar conservation law with alternating characteristic field”, Matem. Mod., 30:5 (2018), 76–98

Citation in format AMSBIB
\Bibitem{ZyuKovOst18}
\by N.~A.~Zyuzina, O.~A.~Kovyrkina, V.~V.~Ostapenko
\paper On the monotonicity of the CABARET scheme approximating a scalar conservation law with alternating characteristic field
\jour Matem. Mod.
\yr 2018
\vol 30
\issue 5
\pages 76--98
\mathnet{http://mi.mathnet.ru/mm3969}


Linking options:
  • http://mi.mathnet.ru/eng/mm3969
  • http://mi.mathnet.ru/eng/mm/v30/i5/p76

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математическое моделирование
    Number of views:
    This page:190
    Full text:33
    References:11
    First page:8

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021