Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2019, Volume 31, Number 4, Pages 111–130 (Mi mm4067)  

This article is cited in 2 scientific papers (total in 2 papers)

Continuous method for calculating the transport equations for a multicomponent heterogeneous system on fixed Euler grids

Ch. Zhanga, I. S. Menshovba

a Lomonosov Moscow State University
b Keldysh Institute of Applied Mathematics of RAS

Abstract: A new numerical method for solving the transport equations of a multicomponent heterogeneous system on fixed Eulerian grids is considered. The system consists of an arbitrary number of components. Any two components are separated by a boundary (interface). Each component is characterized by a characteristic function — the volume fraction, which is transported in a given velocity field and determines the instantaneous distribution of the component in space. The feature of this system is that it requires two conditions to be satisfied. First, the volume fraction of each component should be in the interval [0,1], and, secondly, any partial sum of volume fractions should not exceed unity. To ensure these conditions, we introduce special characteristic functions instead of volume fractions and propose to solve the transport equations with respect to them. We prove that this approach ensures the fulfillment of the above conditions. The method is compatible with various TVD schemes (MINMOD, Van Leer, Van Albada, Superbee) and interface-sharpening methods (Limited downwind, THINC, Anti-diffusion, Artifical compression). The method is verified in the calculation of a number of test problems, using all the above schemes. Numerical results show the accuracy and reliability of the proposed method.

Keywords: eulerian grid, transport, multicomponent flow, interface-sharpening method.

DOI: https://doi.org/10.1134/S0234087919040075

Full text: PDF file (856 kB)
References: PDF file   HTML file

Received: 18.06.2018
Revised: 18.06.2018
Accepted:19.11.2018

Citation: Ch. Zhang, I. S. Menshov, “Continuous method for calculating the transport equations for a multicomponent heterogeneous system on fixed Euler grids”, Matem. Mod., 31:4 (2019), 111–130

Citation in format AMSBIB
\Bibitem{ZhaMen19}
\by Ch.~Zhang, I.~S.~Menshov
\paper Continuous method for calculating the transport equations for a multicomponent heterogeneous system on fixed Euler grids
\jour Matem. Mod.
\yr 2019
\vol 31
\issue 4
\pages 111--130
\mathnet{http://mi.mathnet.ru/mm4067}
\crossref{https://doi.org/10.1134/S0234087919040075}
\elib{https://elibrary.ru/item.asp?id=37242387}


Linking options:
  • http://mi.mathnet.ru/eng/mm4067
  • http://mi.mathnet.ru/eng/mm/v31/i4/p111

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ch. Zhang, I. Menshov, “Eulerian modelling of compressible three-fluid flows with surface tension”, Russ. J. Numer. Anal. Math. Model, 34:4 (2019), 225–240  crossref  mathscinet  zmath  isi  scopus
    2. Ch. Zhang, I. Menshov, “An interface-regularizing model for compressible three-fluid flows with interfacial tensions”, Comput. Fluids, 210 (2020), 104674  crossref  mathscinet  isi
  • Математическое моделирование
    Number of views:
    This page:158
    Full text:34
    References:16
    First page:7

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021