RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2019, Volume 31, Number 8, Pages 21–43 (Mi mm4101)  

On monotonic differential schemes

I. V. Popovab

a Keldysh Institute of Applied Mathematics of RAS, Moscow
b National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Abstract: Method of construction of monotonic differential schemes for solving the simplest partial differential equations of elliptic and parabolic types with first derivatives and a small parameter at highest derivative is suggested. For this, the concept of adaptive artificial viscosity (AAV) is introduced. The AAV was used for construction of monotonic differential schemes of the approximation order $O(h^4)$ for the problem with boundary layer and $O(\tau^2+h^2)$ for Burgers equation, where $h$ and $\tau$ are mesh steps in space and time correspondingly. Samarsky–Golant approximation schemes (or schemes with ordered differences) are used out of the domains of large gradients. Importance of usage of second order time schemes is outlined. Numerical results are presented.

Keywords: finite difference scheme, monotone schemes, adaptive artificial viscosity.

DOI: https://doi.org/10.1134/S0234087919080021

Full text: PDF file (523 kB)
References: PDF file   HTML file

Received: 18.09.2018
Revised: 18.09.2018
Accepted:11.02.2019

Citation: I. V. Popov, “On monotonic differential schemes”, Matem. Mod., 31:8 (2019), 21–43

Citation in format AMSBIB
\Bibitem{Pop19}
\by I.~V.~Popov
\paper On monotonic differential schemes
\jour Matem. Mod.
\yr 2019
\vol 31
\issue 8
\pages 21--43
\mathnet{http://mi.mathnet.ru/mm4101}
\crossref{https://doi.org/10.1134/S0234087919080021}
\elib{https://elibrary.ru/item.asp?id=38487766}


Linking options:
  • http://mi.mathnet.ru/eng/mm4101
  • http://mi.mathnet.ru/eng/mm/v31/i8/p21

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математическое моделирование
    Number of views:
    This page:137
    Full text:15
    References:9
    First page:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020