Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2019, Volume 31, Number 9, Pages 131–144 (Mi mm4113)  

This article is cited in 1 scientific paper (total in 1 paper)

Hybrid stochastic fractal-based approach to modelling ferroelectrics switching kinetics in injection mode

L. I. Moroz, A. G. Maslovskaya

Amur State University

Abstract: The paper is devoted to development and implementation of hybrid stochastic fractalbased approach to mathematical modeling electron-induced kinetics of ferroelectrics polarization switching as the self-similar memory physical systems. The mathematical model of fractal dynamic system includes an initial value problem for the fractional order differential equation. Computational schemes for solving fractional differential problem were constructed using Adams–Bashforth–Moulton type predictor-corrector methods. The stochastic algorithm based on Monte-Carlo method was proposed to simulate the domain nucleation process during restructuring domain structure in ferroelectrics. The ferroelectrics polarization switching current in electron injection mode was evaluated to demonstrate computational experiment results with comparison of experimental data.

Keywords: fractal model, ferroelectric switching, Monte-Carlo method, fractional-order differential equation, predictor-corrector method.

Funding Agency Grant Number
Ministry of Science and Higher Education of the Russian Federation 1.13421.2019/13.2


DOI: https://doi.org/10.1134/S0234087919090077

Full text: PDF file (457 kB)
References: PDF file   HTML file

Received: 18.03.2019
Revised: 18.03.2019
Accepted:20.05.2019

Citation: L. I. Moroz, A. G. Maslovskaya, “Hybrid stochastic fractal-based approach to modelling ferroelectrics switching kinetics in injection mode”, Matem. Mod., 31:9 (2019), 131–144

Citation in format AMSBIB
\Bibitem{MorMas19}
\by L.~I.~Moroz, A.~G.~Maslovskaya
\paper Hybrid stochastic fractal-based approach to modelling ferroelectrics switching kinetics in injection mode
\jour Matem. Mod.
\yr 2019
\vol 31
\issue 9
\pages 131--144
\mathnet{http://mi.mathnet.ru/mm4113}
\crossref{https://doi.org/10.1134/S0234087919090077}
\elib{https://elibrary.ru/item.asp?id=38590310}


Linking options:
  • http://mi.mathnet.ru/eng/mm4113
  • http://mi.mathnet.ru/eng/mm/v31/i9/p131

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. I. Moroz, A. G. Maslovskaya, “Chislennoe modelirovanie protsessa anomalnoi diffuzii na osnove skhemy povyshennogo poryadka tochnosti”, Matem. modelirovanie, 32:10 (2020), 62–76  mathnet  crossref
  • Number of views:
    This page:171
    Full text:22
    References:11
    First page:14

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021