Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2020, Volume 32, Number 1, Pages 50–70 (Mi mm4147)  

This article is cited in 1 scientific paper (total in 1 paper)

Implementation of the iterative algorithm for numerical solution of 2D magnetogasdynamics problems

A. Yu. Krukovskiy, V. A. Gasilov, Yu. A. Poveschenko, Yu. S. Sharova, L. V. Klochkova

Keldysh Institute of Applied Mathematics, Russian Acad. Sci.

Abstract: We study an algorithm of making a numerical solution to the equations of magnetic gas dynamics (MHD), approximated by a completely conservative Eulerian-Lagrangian difference scheme (PCRS). The governing system describing a high-temperature matter dynamics is solved taking into account the conductive (electron, ion) and radiative heat transfer. The scheme is implicit for the calculations related to the Lagrangian moving grid, and the corresponding difference equations are solved by an iterative method with a consistent account of physical processes. We consider various combinations of difference equations grouped according to physical processes. The convergence criteria for the studied iteration process are obtained and validated through numerical experiments with model and application problems.

Keywords: magnetic gas dynamics, plasma dynamics, Z-pinch, implicit completely conservative difference scheme, iterative method.

DOI: https://doi.org/10.20948/mm-2020-01-04

Full text: PDF file (502 kB)
References: PDF file   HTML file

Received: 18.06.2018
Revised: 18.06.2018
Accepted:19.11.2018

Citation: A. Yu. Krukovskiy, V. A. Gasilov, Yu. A. Poveschenko, Yu. S. Sharova, L. V. Klochkova, “Implementation of the iterative algorithm for numerical solution of 2D magnetogasdynamics problems”, Matem. Mod., 32:1 (2020), 50–70

Citation in format AMSBIB
\Bibitem{KruGasPov20}
\by A.~Yu.~Krukovskiy, V.~A.~Gasilov, Yu.~A.~Poveschenko, Yu.~S.~Sharova, L.~V.~Klochkova
\paper Implementation of the iterative algorithm for numerical solution of 2D magnetogasdynamics problems
\jour Matem. Mod.
\yr 2020
\vol 32
\issue 1
\pages 50--70
\mathnet{http://mi.mathnet.ru/mm4147}
\crossref{https://doi.org/10.20948/mm-2020-01-04}


Linking options:
  • http://mi.mathnet.ru/eng/mm4147
  • http://mi.mathnet.ru/eng/mm/v32/i1/p50

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. S. Boldarev, V. A. Gasilov, A. Yu. Krukovskii, Yu. A. Poveschenko, “Metodika resheniya zadach magnitnoi gidrodinamiki v kvazilagranzhevykh peremennykh”, Matem. modelirovanie, 33:6 (2021), 17–30  mathnet  crossref
  • Number of views:
    This page:225
    Full text:27
    References:16
    First page:14

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021