RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2003, Volume 15, Number 5, Pages 71–79 (Mi mm461)  

This article is cited in 2 scientific papers (total in 2 papers)

Dirichlet cells in the shortest-path metric

K. L. Bogomolova, V. F. Tishkinb

a M. V. Lomonosov Moscow State University
b Institute for Mathematical Modelling, Russian Academy of Sciences

Abstract: We present a new approach to the problems of construction of constrained Delaunay triangulations and Dirichlet cells for arbitrary constraint configurations. A metric equal to the length of the shortest boundary-conforming path between two points is introduced. Dirichlet cells in the new metric resemble classical cells, while taking into account point visibility through the constraints. We prove statements that precisely describe the form of these cells.

Full text: PDF file (1008 kB)
References: PDF file   HTML file

Bibliographic databases:

Received: 12.09.2002

Citation: K. L. Bogomolov, V. F. Tishkin, “Dirichlet cells in the shortest-path metric”, Matem. Mod., 15:5 (2003), 71–79

Citation in format AMSBIB
\Bibitem{BogTis03}
\by K.~L.~Bogomolov, V.~F.~Tishkin
\paper Dirichlet cells in the shortest-path metric
\jour Matem. Mod.
\yr 2003
\vol 15
\issue 5
\pages 71--79
\mathnet{http://mi.mathnet.ru/mm461}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2007296}
\zmath{https://zbmath.org/?q=an:1031.68007}


Linking options:
  • http://mi.mathnet.ru/eng/mm461
  • http://mi.mathnet.ru/eng/mm/v15/i5/p71

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. K. Godunov, “On the ideas, underlying the construction of difference grids”, Comput. Math. Math. Phys., 43:6 (2003), 751–753  mathnet  mathscinet  zmath
    2. D. I. Ivanov, I. E. Ivanov, I. A. Kryukov, “Hamilton–Jacobi equation-based algorithms for approximate solutions to certain problems in applied geometry”, Comput. Math. Math. Phys., 45:8 (2005), 1297–1310  mathnet  mathscinet  zmath  elib  elib
  • Математическое моделирование
    Number of views:
    This page:587
    Full text:175
    References:37
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019