RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2003, Volume 15, Number 1, Pages 87–100 (Mi mm507)  

The accuracy estimation of the numerical solution of the spectral problem with the operator depending on the eigenvalue

E. P. Zhidkov, N. B. Skachkov, T. M. Solov'eva

Joint Institute for Nuclear Research

Abstract: The spectral problems with the eigenvalue-depending operator are usually appeared when the relative variants of the Schroedinger equation in the impulse space are considered. The eigenvalues and eigenfunctions calculation error caused by the numerical solving of such equations is the sum of the error entering the approximation of a continuous equation by the discret equations system with help the Bubnov–Galerkine method and the iterative method. It is shown that the iterative method error is one-two order smaller than for discretisation problem. Hense, the eigenvalues and eigenfunctions calculation accuracy of the spectral problem with the eigenvalue-depending operator is not worse then the linear spectral problem solution accuracy.

Full text: PDF file (1191 kB)
References: PDF file   HTML file

Bibliographic databases:
Received: 29.06.2001

Citation: E. P. Zhidkov, N. B. Skachkov, T. M. Solov'eva, “The accuracy estimation of the numerical solution of the spectral problem with the operator depending on the eigenvalue”, Matem. Mod., 15:1 (2003), 87–100

Citation in format AMSBIB
\Bibitem{ZhiSkaSol03}
\by E.~P.~Zhidkov, N.~B.~Skachkov, T.~M.~Solov'eva
\paper The accuracy estimation of the numerical solution of the spectral problem with the operator depending on the eigenvalue
\jour Matem. Mod.
\yr 2003
\vol 15
\issue 1
\pages 87--100
\mathnet{http://mi.mathnet.ru/mm507}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1998735}
\zmath{https://zbmath.org/?q=an:1038.65119}


Linking options:
  • http://mi.mathnet.ru/eng/mm507
  • http://mi.mathnet.ru/eng/mm/v15/i1/p87

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математическое моделирование
    Number of views:
    This page:312
    Full text:116
    References:61
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020