General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Matem. Mod.:

Personal entry:
Save password
Forgotten password?

Matem. Mod., 2007, Volume 19, Number 1, Pages 29–56 (Mi mm915)  

This article is cited in 6 scientific papers (total in 6 papers)

Numerical modelling of dynamics of turbulent wake behind towed body in the linearly stratified medium

N. P. Moshkina, A. V. Fominab, G. G. Chernykhc

a Institute of Science at Suranaree University of Technology
b Kuzbass State Pedagogical Academy
c Institute of Computing Technologies, Siberian Branch of the Russian Academy of Sciences

Abstract: In this paper, a hierarchy of semi-empirical turbulence models of second order is involved for the description of fluid flow in far turbulent wake behind a towed body. Most complex of models includes the differential equations for normal Reynolds stresses transfer. The results of the calculations showing dynamics of a far turbulent wake in linearly stratified medium in comparison with dynamics of momentumless turbulent wake are demonstrated. Numerical modeling of anisotropic decay of turbulence in a far wake behind a towed body is carried out. The characteristics of a turbulent wake are calculated for large moments of decay time. The numerical model of a passive scalar dynamics in turbulent wakes behind bodies of revolution in linearly stratified fluid is constructed. The results of calculations showing behavior of characteristics of a passive scalar both in a momentumless wake, and in a wake behind a towed body are presented.

Full text: PDF file (599 kB)
References: PDF file   HTML file

Bibliographic databases:
Received: 09.09.2005

Citation: N. P. Moshkin, A. V. Fomina, G. G. Chernykh, “Numerical modelling of dynamics of turbulent wake behind towed body in the linearly stratified medium”, Matem. Mod., 19:1 (2007), 29–56

Citation in format AMSBIB
\by N.~P.~Moshkin, A.~V.~Fomina, G.~G.~Chernykh
\paper Numerical modelling of dynamics of turbulent wake behind towed body in the linearly stratified medium
\jour Matem. Mod.
\yr 2007
\vol 19
\issue 1
\pages 29--56

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. F. Vasil'ev, O. F. Voropaeva, G. G. Chernykh, “Numerical modeling of anisotropic decay of a distant turbulent wake behind a self-propelled body in a linearly stratified medium”, Dokl. Phys., 54:6 (2009), 301–305  mathnet  crossref  mathscinet  adsnasa  isi  elib  scopus
    2. Moshkin N.P., “Parallelnye algoritmy chislennogo modelirovaniya dinamiki turbulentnogo sleda v lineinoi stratifitsirovannoi zhidkosti”, Vychislitelnye tekhnologii, 16:4 (2011), 80–95  elib
    3. Kaptsov O.V. Fomina A.V. Chernykh G.G. Schmidt A.V., “Self-similar degeneration of the turbulent wake behind a body towed in a passively stratified medium”, J. Appl. Mech. Tech. Phys., 53:5 (2012), 672–678  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
    4. Chernykh G.G. Druzhinin O.A. Fomina A.V. Moshkin N.P., “On numerical modeling of the dynamics of turbulent wake behind a towed body in linearly stratified medium”, J. Eng. Thermophys., 21:3 (2012), 155–166  crossref  mathscinet  isi  elib  scopus
    5. O. V. Kaptsov, A. V. Fomina, G. G. Chernykh, A. V. Shmidt, “Avtomodelnoe vyrozhdenie bezympulsnogo turbulentnogo sleda v passivno stratifitsirovannoi srede”, Matem. modelirovanie, 27:1 (2015), 84–98  mathnet  elib
    6. N. V. Burmasheva, E. Yu. Prosviryakov, “Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 23:2 (2019), 341–360  mathnet  crossref  elib
  • Математическое моделирование
    Number of views:
    This page:555
    Full text:174
    First page:3

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020