Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2003, Volume 3, Number 3, Pages 1085–1095 (Mi mmj122)  

This article is cited in 4 scientific papers (total in 4 papers)

Degeneration of the Leray spectral sequence for certain geometric quotients

C. A. M. Petersa, J. H. M. Steenbrinkb

a University of Grenoble 1 — Joseph Fourier
b Radboud University Nijmegen

Abstract: We prove that the Leray spectral sequence in rational cohomology for the quotient map $U_{n,d}\to U_{n,d}/G$ where $U_{n,d}$ is the affine variety of equations for smooth hypersurfaces of degree $d$ in $\mathbb P^n(\mathbb C)$ and $G$ is the general linear group, degenerates at $E_2$.

Key words and phrases: Geometric quotient, hypersurfaces, Leray spectral sequence.

DOI: https://doi.org/10.17323/1609-4514-2003-3-3-1085-1095

Full text: http://www.ams.org/.../abst3-3-2003.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 14D20, 14L35, 14J70
Received: December 10, 2002
Language:

Citation: C. A. M. Peters, J. H. M. Steenbrink, “Degeneration of the Leray spectral sequence for certain geometric quotients”, Mosc. Math. J., 3:3 (2003), 1085–1095

Citation in format AMSBIB
\Bibitem{PetSte03}
\by C.~A.~M.~Peters, J.~H.~M.~Steenbrink
\paper Degeneration of the Leray spectral sequence for certain geometric quotients
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 3
\pages 1085--1095
\mathnet{http://mi.mathnet.ru/mmj122}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-3-1085-1095}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2078574}
\zmath{https://zbmath.org/?q=an:1049.14035}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000208594300015}


Linking options:
  • http://mi.mathnet.ru/eng/mmj122
  • http://mi.mathnet.ru/eng/mmj/v3/i3/p1085

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Tommasi O., “Rational cohomology of the moduli space of genus 4 curves”, Compos. Math., 141:2 (2005), 359–384  crossref  mathscinet  zmath  isi
    2. Tommasi O., “Rational cohomology of $\mathscr M_{3,2}$”, Compos. Math., 143:4 (2007), 986–1002  crossref  mathscinet  zmath  isi
    3. Bergström J., Tommasi O., “The rational cohomology of $\overline{\mathscr M}_4$”, Math. Ann., 338:1 (2007), 207–239  crossref  mathscinet  zmath  isi
    4. Tommasi O., “Stable Cohomology of Spaces of Non-Singular Hypersurfaces”, Adv. Math., 265 (2014), 428–440  crossref  mathscinet  zmath  isi
  • Moscow Mathematical Journal
    Number of views:
    This page:180
    References:49

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021