Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2003, Volume 3, Number 4, Pages 1209–1221 (Mi mmj128)  

This article is cited in 5 scientific papers (total in 6 papers)

Frequent representations

V. I. Arnol'dab

a Steklov Mathematical Institute, Russian Academy of Sciences
b Université Paris-Dauphine

Abstract: Given a unitary representation $T$ of a finite group $G$ in $\mathbb C^n$, write $M$ for the variety of such representations which are unitary equivalent to $T$. The representation $T$ is said to be frequent if the dimension of the variety $M$ is maximal (among all representations of $G$ in the same complex space). We prove that the irreducible representations are distributed, in the frequent representation (of large dimension), asymptotically in the same way as in the fundamental representation in the space of functions on $G$: the frequencies of the irreducible components are proportional to their dimensions.

Key words and phrases: Representations of finite groups, unitary representations, frequent representations.

DOI: https://doi.org/10.17323/1609-4514-2003-3-4-1209-1221

Full text: http://www.ams.org/.../abst3-4-2003.html
References: PDF file   HTML file

Bibliographic databases:

Received: May 18, 2003
Language:

Citation: V. I. Arnol'd, “Frequent representations”, Mosc. Math. J., 3:4 (2003), 1209–1221

Citation in format AMSBIB
\Bibitem{Arn03}
\by V.~I.~Arnol'd
\paper Frequent representations
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 4
\pages 1209--1221
\mathnet{http://mi.mathnet.ru/mmj128}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-4-1209-1221}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2058796}
\zmath{https://zbmath.org/?q=an:1075.20004}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000208594400001}


Linking options:
  • http://mi.mathnet.ru/eng/mmj128
  • http://mi.mathnet.ru/eng/mmj/v3/i4/p1209

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Aicardi F., “Empirical estimates of the average orders of orbits period lengths in Euler groups”, C. R. Math. Acad. Sci. Paris, 339:1 (2004), 15–20  crossref  mathscinet  zmath  isi
    2. Arnold V., “Number-theoretical turbulence in Fermat-Euler arithmetics and large young diagrams geometry statistics”, J. Math. Fluid Mech., 7, suppl. 1 (2005), S4–S50  crossref  mathscinet  zmath  isi
    3. V. I. Arnol'd, “Statistics of Young diagrams of cycles of dynamical systems for finite tori automorphisms”, Mosc. Math. J., 6:1 (2006), 43–56  mathnet  crossref  mathscinet  zmath
    4. “Vladimir Igorevich Arnol'd (on his 70th birthday)”, Russian Math. Surveys, 62:5 (2007), 1021–1030  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. Ramacher P., “Reduced Weyl asymptotics for pseudodifferential operators on bounded domains I. The finite group case”, J. Funct. Anal., 255:4 (2008), 777–818  crossref  mathscinet  zmath  isi  elib
    6. V. I. Arnold, “Topological properties of eigenoscillations in mathematical physics”, Proc. Steklov Inst. Math., 273 (2011), 25–34  mathnet  crossref  mathscinet  zmath  isi  elib  elib
  • Moscow Mathematical Journal
    Number of views:
    This page:309
    References:62

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022