RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2004, Volume 4, Number 1, Pages 181–198 (Mi mmj147)  

This article is cited in 3 scientific papers (total in 3 papers)

Moduli stacks $\overline L_{g,S}$

Yu. I. Maninab

a Max Planck Institute for Mathematics
b Northwestern University

Abstract: This paper is a sequel to the paper by A. Losev and Yu. Manin, in which new moduli stacks $\overline L_{g,S}$ of pointed curves were introduced. They classify curves endowed with a family of smooth points divided into two groups, such that the points of the second group are allowed to coincide. The homology of these stacks form components of the extended modular operad whose combinatorial models are further studied in another paper by Losev and Manin. In this paper the basic geometric properties of $\overline L_{g,S}$ are established using the notion of weighted stable pointed curves introduced recently by B. Hassett. The main result is a generalization of Keel's and Kontsevich–Manin's theorems on the structure of $H^*(\overline M_{0,S})$.

Key words and phrases: Stable pointed curves, moduli spaces, generalized Keel's relations.

DOI: https://doi.org/10.17323/1609-4514-2004-4-1-181-198

Full text: http://www.ams.org/.../abst4-1-2004.html
References: PDF file   HTML file

Bibliographic databases:

MSC: Primary 14N35; Secondary 14H10, 53D45
Received: January 13, 2003
Language:

Citation: Yu. I. Manin, “Moduli stacks $\overline L_{g,S}$”, Mosc. Math. J., 4:1 (2004), 181–198

Citation in format AMSBIB
\Bibitem{Man04}
\by Yu.~I.~Manin
\paper Moduli stacks $\overline L_{g,S}$
\jour Mosc. Math.~J.
\yr 2004
\vol 4
\issue 1
\pages 181--198
\mathnet{http://mi.mathnet.ru/mmj147}
\crossref{https://doi.org/10.17323/1609-4514-2004-4-1-181-198}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2074988}
\zmath{https://zbmath.org/?q=an:1082.14057}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000208594500008}


Linking options:
  • http://mi.mathnet.ru/eng/mmj147
  • http://mi.mathnet.ru/eng/mmj/v4/i1/p181

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Arend Bayer, Yu. I. Manin, “Stability conditions, wall-crossing and weighted Gromov–Witten invariants”, Mosc. Math. J., 9:1 (2009), 3–32  mathnet  mathscinet  zmath
    2. Ceyhan Ö., “Chow groups of the moduli spaces of weighted pointed stable curves of genus zero”, Adv. Math., 221:6 (2009), 1964–1978  crossref  mathscinet  zmath  isi  elib  scopus
    3. Birkar C., Cascini P., Hacon Ch.D., McKernan J., “Existence of minimal models for varieties of log general type”, J. Amer. Math. Soc., 23:2 (2010), 405–468  crossref  mathscinet  zmath  isi  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:204
    References:52

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020