RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2004, Volume 4, Number 4, Pages 787–846 (Mi mmj172)  

This article is cited in 5 scientific papers (total in 5 papers)

Counting minimal form factors of the restricted sine-Gordon model

M. Jimboa, T. Miwab, Y. Takeyamac

a University of Tokyo
b Kyoto University
c University of Tsukuba

Abstract: We revisit the issue of counting all local fields of the restricted sine-Gordon model, in the case corresponding to a perturbation of minimal unitary conformal field theory. The problem amounts to the study of a quotient of certain space of polynomials which enter the integral representation for form factors. This space may be viewed as a $q$-analog of the space of conformal coinvariants associated with $U_q(\widehat{\mathfrak{sl}}_2)$ with $q=\sqrt{-1}$. We prove that its character is given by the restricted Kostka polynomial multiplied by a simple factor. As a result, we obtain a formula for the truncated character of the total space of local fields in terms of the Virasoro characters.

Key words and phrases: Form factor, restricted sine-Gordon model.

DOI: https://doi.org/10.17323/1609-4514-2004-4-4-787-846

Full text: http://www.ams.org/.../abst4-4-2004.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 81T40, 81R50
Received: April 11, 2003
Language:

Citation: M. Jimbo, T. Miwa, Y. Takeyama, “Counting minimal form factors of the restricted sine-Gordon model”, Mosc. Math. J., 4:4 (2004), 787–846

Citation in format AMSBIB
\Bibitem{JimMiwTak04}
\by M.~Jimbo, T.~Miwa, Y.~Takeyama
\paper Counting minimal form factors of the restricted sine-Gordon model
\jour Mosc. Math.~J.
\yr 2004
\vol 4
\issue 4
\pages 787--846
\mathnet{http://mi.mathnet.ru/mmj172}
\crossref{https://doi.org/10.17323/1609-4514-2004-4-4-787-846}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2124168}
\zmath{https://zbmath.org/?q=an:1084.81066}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000208595000002}


Linking options:
  • http://mi.mathnet.ru/eng/mmj172
  • http://mi.mathnet.ru/eng/mmj/v4/i4/p787

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Feigin B., Feigin E., “Homological realization of restricted Kostka polynomials”, Int. Math. Res. Not., 2005, no. 33, 1997–2029  crossref  mathscinet  zmath  isi  elib
    2. Murakami J., Nagatomo K., “Logarithmic knot invariants arising from restricted quantum groups”, Internat. J. Math., 19:10 (2008), 1203–1213  crossref  mathscinet  zmath  isi  elib  scopus
    3. Lashkevich M., Pugai Ya., “Form Factors in Sinh- and sine-Gordon Models, Deformed Virasoro Algebra, Macdonald Polynomials and Resonance Identities”, Nucl. Phys. B, 877:2 (2013), 538–573  crossref  mathscinet  zmath  isi  elib  scopus
    4. Lashkevich M., Pugai Ya., “On Form Factors and Macdonald Polynomials”, J. High Energy Phys., 2013, no. 9, 095  crossref  mathscinet  zmath  isi  elib  scopus
    5. Murakami J., “Generalized Kashaev Invariants For Knots in Three Manifolds”, Quantum Topol., 8:1 (2017), 35–73  crossref  mathscinet  zmath  isi  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:152
    References:28

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021