|
Эта публикация цитируется в 63 научных статьях (всего в 63 статьях)
Positivity and canonical bases in rank 2 cluster algebras of finite and affine types
[Положительность и канонические базисы в кластерных алгебрах ранга 2 конечного и аффинного типов]
P. Sherman, A. V. Zelevinskii Northeastern University
Аннотация:
Изучение кластерных алгебр было мотивировано желанием создать алгебраический формализм для понимания полной положительности и канонических базисов в полупростых алгебраических группах. В этой работе мы определяем и вычисляем канонический базис для специального семейства кластерных алгебр ранга 2.
DOI:
https://doi.org/10.17323/1609-4514-2004-4-4-947-974
Полный текст:
http://www.ams.org/.../abst4-4-2004.html
Список литературы:
PDF файл
HTML файл
Реферативные базы данных:
MSC: Primary 16S99; Secondary 05E15, 22E46 Статья поступила: 9 июля 2003 г.; исправленный вариант 14 декабря 2003 г.
Язык публикации: английский
Образец цитирования:
R. Sherman, A. V. Zelevinskii, “Positivity and canonical bases in rank 2 cluster algebras of finite and affine types”, Mosc. Math. J., 4:4 (2004), 947–974
Цитирование в формате AMSBIB
\RBibitem{SheZel04}
\by R.~Sherman, A.~V.~Zelevinskii
\paper Positivity and canonical bases in rank~2 cluster algebras of finite and affine types
\jour Mosc. Math.~J.
\yr 2004
\vol 4
\issue 4
\pages 947--974
\mathnet{http://mi.mathnet.ru/mmj178}
\crossref{https://doi.org/10.17323/1609-4514-2004-4-4-947-974}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2124174}
\zmath{https://zbmath.org/?q=an:1103.16018}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000208595000008}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/mmj178 http://mi.mathnet.ru/rus/mmj/v4/i4/p947
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Эта публикация цитируется в следующих статьяx:
-
Berenstein A., Zelevinsky A., “Quantum cluster algebras”, Adv Math, 195:2 (2005), 405–455
-
Ph. Caldero, A. V. Zelevinskii, “Laurent expansions in cluster algebras via quiver representations”, Mosc. Math. J., 6:3 (2006), 411–429
-
Caldero Ph., Keller B., “From triangulated categories to cluster algebras. II”, Ann. Sci. Йcole Norm. Sup. (4), 39:6 (2006), 983–1009
-
Zhu Bin, “Applications of BGP-reflection functors: isomorphisms of cluster algebras”, Sci. China Ser. A, 49:12 (2006), 1839–1854
-
Buan A.B., Marsh R., “Cluster-tilting theory”, Trends in Representation Theory of Algebras and Related Topics, Contemporary Mathematics Series, 406, 2006, 1–30
-
Hasselblatt B., Propp J., “Degree-growth of monomial maps”, Ergodic Theory Dynam. Systems, 27:5 (2007), 1375–1397
-
Hone A.N.W., “Singularity confinement for maps with the Laurent property”, Phys. Lett. A, 361:4-5 (2007), 341–345
-
Fomin S., Zelevinsky A., “Cluster algebras. IV. Coefficients”, Compos. Math., 143:1 (2007), 112–164
-
Zelevinsky A., “Semicanonical basis generators of the cluster algebra of type $A_1^{(1)}$”, Electron. J. Combin., 14:1 (2007), N4, 5 pp.
-
Musiker G., Propp J., “Combinatorial interpretations for rank-two cluster algebras of affine type”, Electron. J. Combin., 14:1 (2007), R15, 23 pp.
-
Fock V.V., Goncharov A.B., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér. (4), 42:6 (2009), 865–930
-
Di Francesco Ph., Kedem R., “Positivity of the $T$-system cluster algebra”, Electron. J. Combin., 16:1 (2009), R140, 39 pp.
-
Schiffler R., Thomas H., “On cluster algebras arising from unpunctured surfaces”, Int. Math. Res. Not. IMRN, 2009, no. 17, 3160–3189
-
Dupont G., “Positivity in coefficient-free rank two cluster algebras”, Electron. J. Combin., 16:1 (2009), R98, 11 pp.
-
Philippe Di Francesco, Rinat Kedem, “$Q$-system Cluster Algebras, Paths and Total Positivity”, SIGMA, 6 (2010), 014, 36 pp.
-
Dupont G., “Quantized Chebyshev polynomials and cluster characters with coefficients”, J. Algebraic Combinatorics, 31:4 (2010), 501–532
-
Buan A.B., Marsh R.J., “Denominators in cluster algebras of affine type”, J. Algebra, 323:8 (2010), 2083–2102
-
Schiffler R., “On cluster algebras arising from unpunctured surfaces. II”, Adv. Math., 223:6 (2010), 1885–1923
-
Di Francesco Ph., Kedem R., “Discrete Non-commutative Integrability: Proof of a Conjecture by M. Kontsevich”, Int Math Res Not, 2010, no. 21, 4042–4063
-
Assem I., Reutenauer Ch., Smith D., “Friezes”, Adv Math, 225:6 (2010), 3134–3165
-
Dupont G., “Transverse quiver Grassmannians and bases in affine cluster algebras”, Algebra & Number Theory, 4:5 (2010), 599–624
-
Musiker G., Schiffler R., “Cluster expansion formulas and perfect matchings”, J Algebraic Combin, 32:2 (2010), 187–209
-
Nakajima H., “Quiver varieties and cluster algebras”, Kyoto Journal of Mathematics, 51:1 (2011), 71–126
-
Dupont G., “Generic variables in acyclic cluster algebras”, J Pure Appl Algebra, 215:4 (2011), 628–641
-
Keller B., “Cluster Algebras and Cluster Categories”, Bulletin of the Iranian Mathematical Society, 37:2 (2011), 187–234
-
Chen X., Ding M., Sheng J., “Bar-invariant bases of the quantum cluster algebra of type A (2) ((2))”, Czechoslovak Math J, 61:4 (2011), 1077–1090
-
Plamondon P.-G., “Cluster algebras via cluster categories with infinite-dimensional morphism spaces”, Compos Math, 147:6 (2011), 1921–1954
-
Di Francesco Ph., Kedem R., “Non-commutative integrability, paths and quasi-determinants”, Adv Math, 228:1 (2011), 97–152
-
Lampe Ph., “A Quantum Cluster Algebra of Kronecker Type and the Dual Canonical Basis”, Int Math Res Not, 2011, no. 13, 2970–3005
-
Musiker G., “A Graph Theoretic Expansion Formula for Cluster Algebras of Classical Type”, Ann Comb, 15:1 (2011), 147–184
-
Musiker G., Schiffler R., Williams L., “Positivity for cluster algebras from surfaces”, Adv Math, 227:6 (2011), 2241–2308
-
Keller B., “Accumulated Algebra and Applications”, Asterisque, 2011, no. 339, 63–90
-
Irelli G.C. Esposito F., “Geometry of Quiver Grassmannians of Kronecker Type and Applications to Cluster Algebras”, Algebr. Number Theory, 5:6 (2011), 777–801
-
Dupont G., “Generic Cluster Characters”, Int Math Res Not, 2012, no. 2, 360–393
-
Assem I., Dupont G., Schiffler R., Smith D., “Friezes, Strings and Cluster Variables”, Glasg Math J, 54:1 (2012), 27–60
-
Ding M. Xu F., “A Z-Basis for the Cluster Algebra of Type (D)Over-Tilde(4)”, Algebr. Colloq., 19:4 (2012), 591–610
-
Irelli G.C., “Cluster Algebras of Type a(2)((1))”, Algebr. Represent. Theory, 15:5 (2012), 977–1021
-
Ding Ming X.F., “A Quantum Analogue of Generic Bases for Affine Cluster Algebras”, Sci. China-Math., 55:10 (2012), 2045–2066
-
Dupont G., “Positivity for Regular Cluster Characters in Acyclic Cluster Algebras”, J. Algebra. Appl., 11:4 (2012), 1250069
-
Lee K., “On Cluster Variables of Rank Two Acyclic Cluster Algebras”, Ann. Comb., 16:2 (2012), 305–317
-
Ding M. Xu F., “Bases of the Quantum Cluster Algebra of the Kronecker Quiver”, Acta. Math. Sin.-English Ser., 28:6 (2012), 1169–1178
-
Keller B., “Cluster Algebras and Derived Categories”, Derived Categories in Algebraic Geometry - Tokyo 2011, EMS Ser. Congr. Rep., ed. Kawamata Y., Eur. Math. Soc., 2012, 123–183
-
Ding M. Xiao J. Xu F., “Integral Bases of Cluster Algebras and Representations of Tame Quivers”, Algebr. Represent. Theory, 16:2 (2013), 491–525
-
Lee K. Schiffler R., “A Combinatorial Formula for Rank 2 Cluster Variables”, J. Algebr. Comb., 37:1 (2013), 67–85
-
Lee K., Li L., Zelevinsky A., “Positivity and Tameness in Rank 2 Cluster Algebras”, J. Algebr. Comb., 40:3 (2014), 823–840
-
Lee K., Li L., Rupel D., Zelevinsky A., “Greedy Bases in Rank 2 Quantum Cluster Algebras”, Proc. Natl. Acad. Sci. U. S. A., 111:27 (2014), 9712–9716
-
Shen L., “Stasheff Polytopes and the Coordinate Ring of the Cluster X-Variety of Type a(N)”, Sel. Math.-New Ser., 20:3 (2014), 929–959
-
Lee K., Li L., Zelevinsky A., “Greedy Elements in Rank 2 Cluster Algebras”, Sel. Math.-New Ser., 20:1 (2014), 57–82
-
Emily Gunawan, Gregg Musiker, “$T$-Path Formula and Atomic Bases for Cluster Algebras of Type $D$”, SIGMA, 11 (2015), 060, 46 pp.
-
Lee K., Schiffler R., “Positivity For Cluster Algebras”, Ann. Math., 182:1 (2015), 73–125
-
Blanc J., Dolgachev I., “Automorphisms of Cluster Algebras of Rank 2”, Transform. Groups, 20:1 (2015), 1–20
-
Chen X. Ding M. Xu F., “Positivity For Generalized Cluster Variables of Affine Quivers”, Algebr. Represent. Theory, 19:6 (2016), 1495–1506
-
Fraser Ch., “Quasi-Homomorphisms of Cluster Algebras”, Adv. Appl. Math., 81 (2016), 40–77
-
Lee K., Li L., Rupel D., Zelevinsky A., “the Existence of Greedy Bases in Rank 2 Quantum Cluster Algebras”, Adv. Math., 300 (2016), 360–389
-
Fomin S. Pylyayskyy P., “Tensor Diagrams and Cluster Algebras”, Adv. Math., 300 (2016), 717–787
-
Muller G., “Skein and Cluster Algebras of Marked Surfaces”, Quantum Topol., 7:3 (2016), 435–503
-
Cheung M.W., Gross M., Muller G., Musiker G., Rupel D., Stella S., Williams H., “the Greedy Basis Equals the Theta Basis: a Rank Two Haiku”, J. Comb. Theory Ser. A, 145 (2017), 150–171
-
Felikson A., Tumarkin P., “Bases For Cluster Algebras From Orbifolds”, Adv. Math., 318 (2017), 191–232
-
Gunawan E., Musiker G., Vogel H., “Cluster Algebraic Interpretation of Infinite Friezes”, Eur. J. Comb., 81 (2019), 22–57
-
Bai L. Chen X. Ding M. Xu F., “Cluster Multiplication Theorem in the Quantum Cluster Algebra of Type a(2)((2)) and the Triangular Basis”, J. Algebra, 533 (2019), 106–141
-
Fu Ch., Geng Sh., “on Indecomposable Tau-Rigid Modules For Cluster-Tilted Algebras of Tame Type”, J. Algebra, 531 (2019), 249–282
-
Nobe A., “Generators of Rank 2 Cluster Algebras of Affine Types Via Linearization of Seed Mutations”, J. Math. Phys., 60:7 (2019), 072702
-
Rupel D. Stella S. Williams H., “Affine Cluster Monomials Are Generalized Minors”, Compos. Math., 155:7 (2019), 1301–1326
|
Просмотров: |
Эта страница: | 273 | Литература: | 50 |
|