RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2005, Volume 5, Number 3, Pages 577–612 (Mi mmj211)  

This article is cited in 4 scientific papers (total in 4 papers)

On Schrödinger operators with dynamically defined potentials

M. Sh. Goldsteina, W. Schlagb

a Department of Mathematics, University of Toronto
b University of Chicago

Abstract: The purpose of this article is to review some of the recent work on the operator
$$ (H_\psi)_n=-\psi_{n-1}-\psi_{n+1}+\lambda V(T^n x)\psi_n $$
on $\ell^2(\mathbb Z)$, where $T\colon X\to X$ is an ergodic transformation on $(X,\nu)$ and $V$ is a real-valued function. $\lambda$ is a real parameter called coupling constant. Typically, $X=\mathbb T^d=(\mathbb R/\mathbb Z)^d$ with Lebesgue measure, and $V$ will be a trigonometric polynomial or analytic. We shall focus on our earlier papers, as well as other work which was obtained jointly with Jean Bourgain. Our goal is to explain some of the methods and results from these references. Some of the material in this paper has not appeared elsewhere in print.

Key words and phrases: Eigenfunction, localization, Lyapunov exponent.

DOI: https://doi.org/10.17323/1609-4514-2005-5-3-577-612

Full text: http://www.ams.org/.../abst5-3-2005.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 47B80
Received: July 4, 2005
Language:

Citation: M. Sh. Goldstein, W. Schlag, “On Schrödinger operators with dynamically defined potentials”, Mosc. Math. J., 5:3 (2005), 577–612

Citation in format AMSBIB
\Bibitem{GolSch05}
\by M.~Sh.~Goldstein, W.~Schlag
\paper On Schr\"odinger operators with dynamically defined potentials
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 3
\pages 577--612
\mathnet{http://mi.mathnet.ru/mmj211}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-3-577-612}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2241813}
\zmath{https://zbmath.org/?q=an:1143.47301}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000208595500007}


Linking options:
  • http://mi.mathnet.ru/eng/mmj211
  • http://mi.mathnet.ru/eng/mmj/v5/i3/p577

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Goldstein M., Schlag W., “On the formation of gaps in the spectrum of Schrödinger operators with quasi-periodic potentials”, Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday - ERGODIC SCHRODINGER OPERATORS, SINGULAR SPECTRUM, ORTHOGONAL POLYNOMIALS, AND INVERSE SPECTRAL THEORY, Proceedings of Symposia in Pure Mathematics, 76, no. 2, 2007, 591–611  crossref  mathscinet  zmath  adsnasa  isi
    2. Goldstein M., Schlag W., “On resonances and the formation of gaps in the spectrum of quasi-periodic Schrodinger equations”, Ann of Math (2), 173:1 (2011), 337–475  crossref  mathscinet  zmath  isi  scopus
    3. Krueger H., “Multiscale Analysis for Ergodic Schrodinger Operators and Positivity of Lyapunov Exponents”, J Anal Math, 115 (2011), 343–387  crossref  mathscinet  zmath  isi  scopus
    4. Duarte P., Klein S., “Large Deviation Type Estimates For Iterates of Linear Cocycles”, Stoch. Dyn., 16:3, SI (2016), 1660010  crossref  mathscinet  zmath  isi  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:158
    References:42

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019