RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2005, Volume 5, Number 3, Pages 633–667 (Mi mmj213)  

This article is cited in 1 scientific paper (total in 1 paper)

Topology of generic Hamiltonian foliations on Riemann surfaces

S. P. Novikovab

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b University of Maryland

Abstract: The topology of generic Hamiltonian dynamical systems given by the real parts of generic holomorphic 1-forms on Riemann surfaces is studied. Our approach is based on the notion of transversal canonical basis of cycles. This approach allows us to present a convenient combinatorial model of the whole topology of the flow, especially effective for $g=2$. A maximal abelian covering over the Riemann surface is needed here. The complete combinatorial model of the flow is constructed. It consists of the plane diagram and $g$ straight-line flows in 2-tori “with obstacles.” The fundamental semigroup of positive closed paths transversal to the foliation is studied. This work contains an improved exposition of the results presented in the author's recent preprint and new results concerning the calculation of all transversal canonical bases of cycles in the 2-torus with obstacle in terms of continued fractions.

Key words and phrases: Hamiltonian system, Riemann surface, transversal semigroup.

Full text: http://www.ams.org/.../abst5-3-2005.html
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
MSC: 37D40
Received: July 29, 2005
Language: English

Citation: S. P. Novikov, “Topology of generic Hamiltonian foliations on Riemann surfaces”, Mosc. Math. J., 5:3 (2005), 633–667

Citation in format AMSBIB
\Bibitem{Nov05}
\by S.~P.~Novikov
\paper Topology of generic Hamiltonian foliations on Riemann surfaces
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 3
\pages 633--667
\mathnet{http://mi.mathnet.ru/mmj213}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2241815}
\zmath{https://zbmath.org/?q=an:1109.37036}


Linking options:
  • http://mi.mathnet.ru/eng/mmj213
  • http://mi.mathnet.ru/eng/mmj/v5/i3/p633

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kudryavtseva E.A., “An Analogue of the Liouville Theorem for Integrable Hamiltonian Systems with Incomplete Flows”, Dokl. Math., 86:1 (2012), 527–529  crossref  mathscinet  zmath  isi  elib  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:332
    References:47

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019