RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2005, Volume 5, Number 4, Pages 775–779 (Mi mmj222)  

This article is cited in 2 scientific papers (total in 2 papers)

Note on tautological classes of moduli of K3 surfaces

G. Van der Geera, T. Katsurab

a University of Amsterdam
b University of Tokyo

Abstract: In this note, we prove some cycle class relations on moduli of K3 surfaces.

Key words and phrases: K3 surface, moduli space, tautological class.

DOI: https://doi.org/10.17323/1609-4514-2005-5-4-775-779

Full text: http://www.ams.org/.../abst5-4-2005.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 14K10
Received: June 28, 2005
Language:

Citation: G. Van der Geer, T. Katsura, “Note on tautological classes of moduli of K3 surfaces”, Mosc. Math. J., 5:4 (2005), 775–779

Citation in format AMSBIB
\Bibitem{VanKat05}
\by G.~Van der Geer, T.~Katsura
\paper Note on tautological classes of moduli of~K3 surfaces
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 4
\pages 775--779
\mathnet{http://mi.mathnet.ru/mmj222}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-4-775-779}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2266459}
\zmath{https://zbmath.org/?q=an:1124.14011}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000208595600005}


Linking options:
  • http://mi.mathnet.ru/eng/mmj222
  • http://mi.mathnet.ru/eng/mmj/v5/i4/p775

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Marian A., Oprea D., “on Verlinde Sheaves and Strange Duality Over Elliptic Noether-Lefschetz Divisors”, Ann. Inst. Fourier, 64:5 (2014), 2067–2086  crossref  mathscinet  zmath  isi
    2. Marian A., Oprea D., Pandharipande R., “Segre Classes and Hilbert Schemes of Points”, Ann. Sci. Ec. Norm. Super., 50:1 (2017), 239–267  crossref  mathscinet  zmath  isi
  • Moscow Mathematical Journal
    Number of views:
    This page:109
    References:28

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020