RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2006, Volume 6, Number 1, Pages 5–41 (Mi mmj233)  

Lower bounds for transversal complexity of torus bundles over the circle

S. S. Anisov

Utrecht University

Abstract: For a 3-dimensional manifold $M^3$, its complexity $c(M^3)$, introduced by S. Matveev, is the minimal number of vertices of an almost simple spine of $M^3$; in many cases it is equal to the minimal number of tetrahedra in a singular triangulation of $M^3$. Usually it is straightforward to give an upper bound for $c(M)$, but obtaining lower bounds remains very difficult. We consider manifolds fibered by tori over the circle, introduce transversal complexity $tc(M)$ for such manifolds, and give a lower bound for $tc(M)$ in terms of the monodromy of the fiber bundle; this estimate involves a very geometric study of the modular group action on the Farey tesselation of hyperbolic plane. As a byproduct, we construct pseudominimal spines of the manifolds fibered by tori over $S^1$. Finally, we discuss some potential applications of these ideas to other 3-manifolds.

Key words and phrases: Complexity of 3-manifolds, $T^2$-bundles over $S^1$, Farey tesselation

DOI: https://doi.org/10.17323/1609-4514-2006-6-1-5-41

Full text: http://www.ams.org/.../abst6-1-2006.html
References: PDF file   HTML file

Bibliographic databases:

MSC: Primary 57M99; Secondary 57M20, 57M50, 57R05, 57R15, 57R22
Received: December 30, 2005
Language:

Citation: S. S. Anisov, “Lower bounds for transversal complexity of torus bundles over the circle”, Mosc. Math. J., 6:1 (2006), 5–41

Citation in format AMSBIB
\Bibitem{Ani06}
\by S.~S.~Anisov
\paper Lower bounds for transversal complexity of torus bundles over the circle
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 1
\pages 5--41
\mathnet{http://mi.mathnet.ru/mmj233}
\crossref{https://doi.org/10.17323/1609-4514-2006-6-1-5-41}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2265945}
\zmath{https://zbmath.org/?q=an:1127.57007}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000208595700002}


Linking options:
  • http://mi.mathnet.ru/eng/mmj233
  • http://mi.mathnet.ru/eng/mmj/v6/i1/p5

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Moscow Mathematical Journal
    Number of views:
    This page:138
    References:34

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020