RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2006, Volume 6, Number 1, Pages 153–168 (Mi mmj241)  

This article is cited in 2 scientific papers (total in 2 papers)

Zeros of systems of exponential sums and trigonometric polynomials

E. Soprunova

Department of Mathematics and Statistics, University of Massachusetts

Abstract: Gelfond and Khovanskii found a formula for the sum of the values of a Laurent polynomial at the zeros of a system of $n$ Laurent polynomials in $(\mathbb C^{\times})n$ whose Newton polytopes have generic mutual positions. An exponential change of variables gives a similar formula for exponential sums with rational frequencies. We conjecture that this formula holds for exponential sums with real frequencies. We give an integral formula which proves the existence-part of the conjectured formula not only in the complex situation but also in a very general real setting. We also prove the conjectured formula when it gives answer zero, which happens in most cases.

Key words and phrases: Exponential sums, trigonometric polynomials, quasiperiodic functions, mean value.

DOI: https://doi.org/10.17323/1609-4514-2006-6-1-153-168

Full text: http://www.ams.org/.../abst6-1-2006.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 14P15, 33B10
Received: January 30, 2005
Language:

Citation: E. Soprunova, “Zeros of systems of exponential sums and trigonometric polynomials”, Mosc. Math. J., 6:1 (2006), 153–168

Citation in format AMSBIB
\Bibitem{Sop06}
\by E.~Soprunova
\paper Zeros of systems of exponential sums and trigonometric polynomials
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 1
\pages 153--168
\mathnet{http://mi.mathnet.ru/mmj241}
\crossref{https://doi.org/10.17323/1609-4514-2006-6-1-153-168}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2265953}
\zmath{https://zbmath.org/?q=an:1132.14048}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000208595700010}


Linking options:
  • http://mi.mathnet.ru/eng/mmj241
  • http://mi.mathnet.ru/eng/mmj/v6/i1/p153

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Soprunova E., “Exponential Gelfond-Khovanskii formula in dimension one”, Proc. Amer. Math. Soc., 136:1 (2008), 239–245  crossref  mathscinet  zmath  isi  scopus
    2. A. I. Èsterov, “Densities of topological invariants of quasi-periodic subanalytic sets”, Izv. Math., 73:3 (2009), 611–626  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Moscow Mathematical Journal
    Number of views:
    This page:202
    References:64

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020