Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2006, Volume 6, Number 3, Pages 411–429 (Mi mmj254)  

This article is cited in 45 scientific papers (total in 45 papers)

Laurent expansions in cluster algebras via quiver representations

Ph. Calderoa, A. V. Zelevinskiib

a Institut Camille Jordan, Université Claude Bernard Lyon 1
b Northeastern University

Abstract: We study Laurent expansions of cluster variables in a cluster algebra of rank 2 associated to a generalized Kronecker quiver. In the case of the ordinary Kronecker quiver, we obtain explicit expressions for Laurent expansions of the elements of the canonical basis for the corresponding cluster algebra.

Key words and phrases: Cluster algebras, Laurent phenomenon, quiver representations, Kronecker quiver.

DOI: https://doi.org/10.17323/1609-4514-2006-6-3-411-429

Full text: http://www.ams.org/.../abst6-3-2006.html
References: PDF file   HTML file

Bibliographic databases:

MSC: Primary 16G20; Secondary 14M15, 16S99
Received: April 6, 2004; in revised form May 1, 2006
Language:

Citation: Ph. Caldero, A. V. Zelevinskii, “Laurent expansions in cluster algebras via quiver representations”, Mosc. Math. J., 6:3 (2006), 411–429

Citation in format AMSBIB
\Bibitem{CalZel06}
\by Ph.~Caldero, A.~V.~Zelevinskii
\paper Laurent expansions in cluster algebras via quiver representations
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 3
\pages 411--429
\mathnet{http://mi.mathnet.ru/mmj254}
\crossref{https://doi.org/10.17323/1609-4514-2006-6-3-411-429}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2274858}
\zmath{https://zbmath.org/?q=an:1133.16012}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000208595900002}


Linking options:
  • http://mi.mathnet.ru/eng/mmj254
  • http://mi.mathnet.ru/eng/mmj/v6/i3/p411

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Zelevinsky A., “Semicanonical basis generators of the cluster algebra of type $A_1^{(1)}$”, Electron. J. Combin., 14:1 (2007), Note 4, 5 pp.  mathscinet  zmath  isi
    2. Musiker G., Propp J., “Combinatorial interpretations for rank-two cluster algebras of affine type”, Electron. J. Combin., 14:1 (2007), R15, 23 pp.  mathscinet  zmath  isi
    3. Derksen H., Weyman J., Zelevinsky A., “Quivers with potentials and their representations. I. Mutations”, Selecta Math. (N.S.), 14:1 (2008), 59–119  crossref  mathscinet  zmath  isi  scopus
    4. Caldero P., Reineke M., “On the quiver Grassmannian in the acyclic case”, J. Pure Appl. Algebra, 212:11 (2008), 2369–2380  crossref  mathscinet  zmath  isi  scopus
    5. Schiffler R., Thomas H., “On Cluster Algebras Arising from Unpunctured Surfaces”, Int. Math. Res. Not. IMRN, 2009, no. 17, 3160–3189  mathscinet  zmath  isi
    6. Philippe Di Francesco, Rinat Kedem, “$Q$-system Cluster Algebras, Paths and Total Positivity”, SIGMA, 6 (2010), 014, 36 pp.  mathnet  crossref  mathscinet
    7. Dupont G., “Quantized Chebyshev polynomials and cluster characters with coefficients”, J. Algebraic Combin., 31:4 (2010), 501–532  crossref  mathscinet  zmath  isi  scopus
    8. Buan A.B., Marsh R.J., “Denominators in cluster algebras of affine type”, J. Algebra, 323:8 (2010), 2083–2102  crossref  mathscinet  zmath  isi  scopus
    9. Schiffler R., “On cluster algebras arising from unpunctured surfaces. II”, Adv. Math., 223:6 (2010), 1885–1923  crossref  mathscinet  zmath  isi  elib  scopus
    10. Xu Fan, “On the cluster multiplication theorem for acyclic cluster algebras”, Trans. Amer. Math. Soc., 362:2 (2010), 753–776  crossref  mathscinet  zmath  isi  scopus
    11. Di Francesco Ph., Kedem R., “Discrete non-commutative integrability: proof of a conjecture by M. Kontsevich”, Int. Math. Res. Not. IMRN, 2010, no. 21, 4042–4063  mathscinet  zmath  isi
    12. Assem I., Reutenauer Ch., Smith D., “Friezes”, Adv. Math., 225:6 (2010), 3134–3165  crossref  mathscinet  zmath  isi  scopus
    13. Dupont G., “Transverse quiver Grassmannians and bases in affine cluster algebras”, Algebra Number Theory, 4:5 (2010), 599–624  crossref  mathscinet  zmath  isi  scopus
    14. Musiker G., Schiffler R., “Cluster expansion formulas and perfect matchings”, J. Algebraic Combin., 32:2 (2010), 187–209  crossref  mathscinet  zmath  isi  elib  scopus
    15. Assem I., Dupont G., “Friezes and a construction of the Euclidean cluster variables”, J. Pure Appl. Algebra, 215:10 (2011), 2322–2340  crossref  mathscinet  zmath  isi  scopus
    16. Nakajima H., “Quiver varieties and cluster algebras”, Kyoto Journal of Mathematics, 51:1 (2011), 71–126  crossref  zmath  isi  scopus
    17. Irelli G.C., “Quiver Grassmannians associated with string modules”, J. Algebraic Combin., 33:2 (2011), 259–276  crossref  mathscinet  zmath  isi  scopus
    18. Dupont G., “Generic variables in acyclic cluster algebras”, J. Pure Appl. Algebra, 215:4 (2011), 628–641  crossref  mathscinet  zmath  isi  scopus
    19. Chen X., Ding M., Sheng J., “Bar-invariant bases of the quantum cluster algebra of type $A_2^{(2)}$”, Czechoslovak Math. J., 61:4 (2011), 1077–1090  crossref  mathscinet  zmath  isi  scopus
    20. Szántó C., “On the cardinalities of Kronecker quiver Grassmannians”, Math. Z., 269:3-4 (2011), 833–846  crossref  mathscinet  zmath  isi  scopus
    21. Rupel D., “On a quantum analog of the Caldero-Chapoton formula”, Int. Math. Res. Not. IMRN, 2011, no. 14, 3207–3236  mathscinet  zmath  isi
    22. Di Francesco Ph., Kedem R., “Non-commutative integrability, paths and quasi-determinants”, Adv. Math., 228:1 (2011), 97–152  crossref  mathscinet  zmath  isi  scopus
    23. Lampe Ph., “A quantum cluster algebra of Kronecker type and the dual canonical basis”, Int. Math. Res. Not. IMRN, 2011, no. 13, 2970–3005  mathscinet  zmath  isi
    24. Musiker G., “A graph theoretic expansion formula for cluster algebras of classical type”, Ann. Comb., 15:1 (2011), 147–184  crossref  mathscinet  zmath  isi  scopus
    25. Musiker G., Schiffler R., Williams L., “Positivity for cluster algebras from surfaces”, Adv. Math., 227:6 (2011), 2241–2308  crossref  mathscinet  zmath  isi  elib  scopus
    26. Irelli G.C., Esposito F., “Geometry of Quiver Grassmannians of Kronecker Type and Applications to Cluster Algebras”, Algebr. Number Theory, 5:6 (2011), 777–801  crossref  mathscinet  zmath  isi
    27. Dupont G., “Generic cluster characters”, Int. Math. Res. Not. IMRN, 2012, no. 2, 360–393  crossref  mathscinet  zmath  isi  scopus
    28. Ding M., Xu F., “A Z-Basis for the Cluster Algebra of Type (D)Over-Tilde(4)”, Algebr. Colloq., 19:4 (2012), 591–610  crossref  mathscinet  zmath  isi
    29. Irelli G.C., “Cluster Algebras of Type a(2)((1))”, Algebr. Represent. Theory, 15:5 (2012), 977–1021  crossref  mathscinet  zmath  isi  scopus
    30. Ding Ming, Xu Fan, “A Quantum Analogue of Generic Bases for Affine Cluster Algebras”, Sci. China-Math., 55:10 (2012), 2045–2066  crossref  mathscinet  zmath  isi  scopus
    31. Dupont G., “Positivity for Regular Cluster Characters in Acyclic Cluster Algebras”, J. Algebra. Appl., 11:4 (2012), 1250069  crossref  mathscinet  zmath  isi  scopus
    32. Lee K., “On Cluster Variables of Rank Two Acyclic Cluster Algebras”, Ann. Comb., 16:2 (2012), 305–317  crossref  mathscinet  zmath  isi  scopus
    33. Ding M., Xu F., “Bases of the Quantum Cluster Algebra of the Kronecker Quiver”, Acta. Math. Sin.-English Ser., 28:6 (2012), 1169–1178  crossref  mathscinet  zmath  isi  scopus
    34. Dupont G., “Cluster Multiplication in Regular Components via Generalized Chebyshev Polynomials”, Algebr. Represent. Theory, 15:3 (2012), 527–549  crossref  mathscinet  zmath  isi  scopus
    35. Ding M., Xiao J., Xu F., “Integral Bases of Cluster Algebras and Representations of Tame Quivers”, Algebr. Represent. Theory, 16:2 (2013), 491–525  crossref  mathscinet  zmath  isi  scopus
    36. Lee K., Schiffler R., “A Combinatorial Formula for Rank 2 Cluster Variables”, J. Algebr. Comb., 37:1 (2013), 67–85  crossref  mathscinet  zmath  isi  scopus
    37. Lee K., Li L., “On Natural Maps From Strata of Quiver Grassmannians to Ordinary Grassmannians”, Noncommutative Birational Geometry, Representations and Combinatorics, Contemporary Mathematics, 592, eds. Berenstein A., Retakh V., Amer Mathematical Soc, 2013, 199–214  crossref  mathscinet  zmath  isi
    38. Lorscheid O., “On Schubert Decompositions of Quiver Grassmannians”, J. Geom. Phys., 76 (2014), 169–191  crossref  mathscinet  zmath  isi  elib  scopus
    39. Berenstein A., Zelevinsky A., “Triangular Bases in Quantum Cluster Algebras”, Int. Math. Res. Notices, 2014, no. 6, 1651–1688  crossref  mathscinet  zmath  isi  elib  scopus
    40. Veselov A.P., Willox R., “Burchnall-Chaundy Polynomials and the Laurent Phenomenon”, J. Phys. A-Math. Theor., 48:20 (2015), 205201  crossref  mathscinet  zmath  isi  elib  scopus
    41. Chen X., Ding M., Xu F., “Positivity For Generalized Cluster Variables of Affine Quivers”, Algebr. Represent. Theory, 19:6 (2016), 1495–1506  crossref  mathscinet  zmath  isi  scopus
    42. Felikson A., Tumarkin P., “Acyclic Cluster Algebras, Reflection Groups, and Curves on a Punctured Disc”, Adv. Math., 340 (2018), 855–882  crossref  mathscinet  zmath  isi  scopus
    43. Bai L., Chen X., Ding M., Xu F., “Cluster Multiplication Theorem in the Quantum Cluster Algebra of Type a(2)((2)) and the Triangular Basis”, J. Algebra, 533 (2019), 106–141  crossref  mathscinet  zmath  isi  scopus
    44. Nobe A., “Generators of Rank 2 Cluster Algebras of Affine Types Via Linearization of Seed Mutations”, J. Math. Phys., 60:7 (2019), 072702  crossref  mathscinet  zmath  isi  scopus
    45. Rupel D., Stella S., Williams H., “Affine Cluster Monomials Are Generalized Minors”, Compos. Math., 155:7 (2019), 1301–1326  crossref  mathscinet  zmath  isi  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:412
    References:60

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022