RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2006, Volume 6, Number 4, Pages 657–672 (Mi mmj264)  

This article is cited in 4 scientific papers (total in 4 papers)

On the ergodicity of cylindrical transformations given by the logarithm

B. R. Fayada, M. Lemańczyb

a Université Paris 13
b Nikolaus Copernicus University

Abstract: Given $\alpha\in[0,1]$ and $\varphi\colon\mathbb T\to\mathbb R$ measurable, the cylindrical cascade $S_{\alpha\varphi}$ is the map from $\mathbb T\times\mathbb R$ to itself given by $S_{\alpha\varphi}(x,y)=(x+\alpha, y+\varphi(x))$, which naturally appears in the study of some ordinary differential equations on $\mathbb R^3$. In this paper, we prove that for a set of full Lebesgue measure of $\alpha\in[0,1]$ the cylindrical cascades $S_{\alpha\varphi}$ are ergodic for every smooth function $\varphi$ with a logarithmic singularity, provided that the average of $\varphi$ vanishes.
Closely related to $S_{\alpha\varphi}$ are the special flows constructed above $R_\alpha$ and under $\varphi+c$, where $c\in\mathbb R$ is such that $\varphi+c>0$. In the case of a function $\varphi$ with an asymmetric logarithmic singularity, our result gives the first examples of ergodic cascades $S_{\alpha\varphi}$ with the corresponding special flows being mixing. Indeed, if the latter flows are mixing, then the usual techniques used to prove the essential value criterion for $S_{\alpha\varphi}$, which is equivalent to ergodicity, fail, and we devise a new method to prove this criterion, which we hope could be useful in tackling other problems of ergodicity for cocycles preserving an infinite measure.

Key words and phrases: Cylindrical cascade, essential value, logarithmic and phrases.

Full text: http://www.ams.org/.../abst6-4-2006.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 37C40, 37A20, 37C10
Received: February 1, 2005
Language: English

Citation: B. R. Fayad, M. Lemańczy, “On the ergodicity of cylindrical transformations given by the logarithm”, Mosc. Math. J., 6:4 (2006), 657–672

Citation in format AMSBIB
\Bibitem{FayLem06}
\by B.~R.~Fayad, M.~Lema{\'n}czy
\paper On the ergodicity of cylindrical transformations given by the logarithm
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 4
\pages 657--672
\mathnet{http://mi.mathnet.ru/mmj264}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2291157}
\zmath{https://zbmath.org/?q=an:1130.37341}


Linking options:
  • http://mi.mathnet.ru/eng/mmj264
  • http://mi.mathnet.ru/eng/mmj/v6/i4/p657

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Conze J.-P., Fra̧czek K., “Cocycles over interval exchange transformations and multivalued Hamiltonian flows”, Adv. Math., 226:5 (2011), 4373–4428  crossref  mathscinet  zmath  isi  elib  scopus
    2. Fraczek K., Ulcigrai C., “Ergodic Properties of Infinite Extensions of Area-Preserving Flows”, Math. Ann., 354:4 (2012), 1289–1367  crossref  mathscinet  zmath  isi  elib  scopus
    3. Cirilo P., Lima Yu., Pujals E., “Law of Large Numbers For Certain Cylinder Flows”, Ergod. Theory Dyn. Syst., 34:3 (2014), 801–825  crossref  mathscinet  zmath  isi  scopus
    4. Fayad B., Kanigowski A., “Multiple Mixing For a Class of Conservative Surface Flows”, Invent. Math., 203:2 (2016), 555–614  crossref  mathscinet  zmath  isi  elib  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:107
    References:37

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019