|
This article is cited in 4 scientific papers (total in 4 papers)
A counterexample to a multidimensional version of the weakened Hilbert's 16th problem
M. Bobieński, H. Żołądek Institute of Mathematics, Warsaw University
Abstract:
In the weakened 16th Hilbert's Problem one asks for a bound on the number of limit cycles which appear after a polynomial perturbation of a planar polynomial Hamiltonian vector field. It is known that this number is finite for an individual vector field. In the multidimensional generalization of this problem one considers polynomial perturbation of a polynomial vector field with an invariant plane supporting a Hamiltonian dynamics. We present an explicit example of such perturbation with an infinite number of limit cycles which accumulate at some separatrix loop.
Key words and phrases:
Polynomial vector field, limit cycle, invariant manifold, Abelian integral
DOI:
https://doi.org/10.17323/1609-4514-2007-7-1-1-20
Full text:
http://www.ams.org/.../abst7-1-2007.html
References:
PDF file
HTML file
Bibliographic databases:
MSC: 34C07, 34C08 Received: January 19, 2006; in revised form June 7, 2006
Language:
Citation:
M. Bobieński, H. Żołądek, “A counterexample to a multidimensional version of the weakened Hilbert's 16th problem”, Mosc. Math. J., 7:1 (2007), 1–20
Citation in format AMSBIB
\Bibitem{Bobij}
\by M.~Bobie{\'n}ski, H.~{\.Z}o\l {\k a}dek
\paper A counterexample to a~multidimensional version of the weakened Hilbert's 16th problem
\jour Mosc. Math.~J.
\yr 2007
\vol 7
\issue 1
\pages 1--20
\mathnet{http://mi.mathnet.ru/mmj268}
\crossref{https://doi.org/10.17323/1609-4514-2007-7-1-1-20}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2324554}
\zmath{https://zbmath.org/?q=an:05202833}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000261708300001}
Linking options:
http://mi.mathnet.ru/eng/mmj268 http://mi.mathnet.ru/eng/mmj/v7/i1/p1
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Lubowiecki P., Zoladek H., “The Hess-Appelrot system. II. Perturbation and limit cycles”, J Differential Equations, 252:2 (2012), 1701–1722
-
Lubowiecki P., Zoladek H., “The Hess-Appelrot System. I. Invariant Torus and its Normal Hyperbolicit”, J. Geom. Mech., 4:4 (2012), 443–467
-
Coll B., Gasull A., Prohens R., “Periodic Orbits for Perturbed Non-Autonomous Differential Equations”, Bull. Sci. Math., 136:7 (2012), 803–819
-
Caubergh M., “Hilbert's Sixteenth Problem for Polynomial Lienard Equations”, Qual. Theor. Dyn. Syst., 11:1, SI (2012), 3–18
|
Number of views: |
This page: | 190 | References: | 52 |
|