RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2007, Volume 7, Number 1, Pages 85–107 (Mi mmj272)  

This article is cited in 7 scientific papers (total in 7 papers)

Counting ramified converings and intersection theory on spaces of rational functions. I. Cohomology of Hurwitz spaces

S. Landoa, D. Zvonkineb

a Laboratoire J.-V. Poncelet, Independent University of Moscow
b Institut de Mathématiques de Jussieu

Abstract: The Hurwitz space is a compactification of the space of rational functions of a given degree. The Lyashko–Looijenga map assigns to a rational function the set of its critical values. It is known that the number of ramified coverings of $\mathbb CP^1$ by $\mathbb CP^1$ with prescribed ramification points and ramification types is related to the degree of the Lyashko–Looijenga map on various strata of the Hurwitz space. Here we explain how the degree of the Lyashko–Looijenga map is related to the intersection theory on this space. We describe the cohomology algebra of the Hurwitz space and prove several relations between the homology classes represented by various strata.

Key words and phrases: Riemann surfaces, moduli space, ramified coverings, Lyashko–Looijenga map, Hurwitz space, Hurwitz numbers.

DOI: https://doi.org/10.17323/1609-4514-2007-7-1-85-107

Full text: http://www.ams.org/.../abst7-1-2007.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 05A, 14C, 14D22, 30F
Received: April 12, 2006; in revised form May 27, 2006
Language:

Citation: S. Lando, D. Zvonkine, “Counting ramified converings and intersection theory on spaces of rational functions. I. Cohomology of Hurwitz spaces”, Mosc. Math. J., 7:1 (2007), 85–107

Citation in format AMSBIB
\Bibitem{LanZvo07}
\by S.~Lando, D.~Zvonkine
\paper Counting ramified converings and intersection theory on spaces of rational functions. I.~Cohomology of Hurwitz spaces
\jour Mosc. Math.~J.
\yr 2007
\vol 7
\issue 1
\pages 85--107
\mathnet{http://mi.mathnet.ru/mmj272}
\crossref{https://doi.org/10.17323/1609-4514-2007-7-1-85-107}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2324558}
\zmath{https://zbmath.org/?q=an:1131.14034}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000261708300005}


Linking options:
  • http://mi.mathnet.ru/eng/mmj272
  • http://mi.mathnet.ru/eng/mmj/v7/i1/p85

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. M. E. Kazarian, S. K. Lando, “Thom Polynomials for Maps of Curves with Isolated Singularities”, Proc. Steklov Inst. Math., 258 (2007), 87–99  mathnet  crossref  mathscinet  zmath  elib  elib
    2. Lando S.K., “Combinatorial facets of Hurwitz numbers”, Applications of group theory to combinatorics, CRC Press, Boca Raton, FL, 2008, 109–131  crossref  zmath  isi
    3. A. Yu. Morozov, “Unitary integrals and related matrix models”, Theoret. and Math. Phys., 162:1 (2010), 1–33  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Kokotov A., Korotkin D., Zograf P., “Isomonodromic tau function on the space of admissible covers”, Adv. Math., 227:1 (2011), 586–600  crossref  mathscinet  zmath  isi  elib  scopus
    5. B. S. Bychkov, “Vychislenie megakart”, Sib. elektron. matem. izv., 10 (2013), 170–179  mathnet
    6. Natanzon S. Zabrodin A., “Symmetric Solutions To Dispersionless 2D Toda Hierarchy, Hurwitz Numbers, and Conformal Dynamics”, Int. Math. Res. Notices, 2015, no. 8, 2082–2110  crossref  mathscinet  zmath  isi  elib  scopus
    7. B. S. Bychkov, “Stepeni kogomologicheskikh klassov multiosobennostei v prostranstvakh Gurvitsa ratsionalnykh funktsii”, Funkts. analiz i ego pril., 53:1 (2019), 16–30  mathnet  crossref  elib
  • Moscow Mathematical Journal
    Number of views:
    This page:351
    References:57

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019