Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2007, Volume 7, Number 1, Pages 135–162 (Mi mmj274)  

This article is cited in 2 scientific papers (total in 2 papers)

Counting ramified coverings and intersection theory on Hurwitz spaces. II. Local structure of Hurwitz spaces and combinatorial results

D. Zvonkine

Institut de Mathématiques de Jussieu

Abstract: The Hurwitz space is a compactification of the space of rational functions of a given degree. We study the intersection of various strata of this space with its boundary. A study of the cohomology ring of the Hurwitz space then allows us to obtain recurrence relations for certain numbers of ramified coverings of a sphere by a sphere with prescribed ramifications. Generating functions for these numbers belong to a very particular subalgebra of the algebra of power series.

Key words and phrases: Riemann surfaces, moduli space, ramified coverings, Lyashko–Looijenga map, Hurwitz space, Hurwitz numbers.

DOI: https://doi.org/10.17323/1609-4514-2007-7-1-135-162

Full text: http://www.ams.org/.../abst7-1-2007.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 05A, 14C, 14D22, 30F
Received: April 12, 2006
Language:

Citation: D. Zvonkine, “Counting ramified coverings and intersection theory on Hurwitz spaces. II. Local structure of Hurwitz spaces and combinatorial results”, Mosc. Math. J., 7:1 (2007), 135–162

Citation in format AMSBIB
\Bibitem{Zvo07}
\by D.~Zvonkine
\paper Counting ramified coverings and intersection theory on Hurwitz spaces. II.~Local structure of Hurwitz spaces and combinatorial results
\jour Mosc. Math.~J.
\yr 2007
\vol 7
\issue 1
\pages 135--162
\mathnet{http://mi.mathnet.ru/mmj274}
\crossref{https://doi.org/10.17323/1609-4514-2007-7-1-135-162}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2324560}
\zmath{https://zbmath.org/?q=an:1131.14037}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000261708300007}


Linking options:
  • http://mi.mathnet.ru/eng/mmj274
  • http://mi.mathnet.ru/eng/mmj/v7/i1/p135

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. M. E. Kazarian, S. K. Lando, “Thom Polynomials for Maps of Curves with Isolated Singularities”, Proc. Steklov Inst. Math., 258 (2007), 87–99  mathnet  crossref  mathscinet  zmath  elib  elib
    2. Shadrin S., Shapiro A., Vainshtein A., “Chamber behavior of double Hurwitz numbers in genus 0”, Adv. Math., 217:1 (2008), 79–96  crossref  mathscinet  zmath  isi  elib  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:348
    References:79

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022