RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2007, Volume 7, Number 2, Pages 209–218 (Mi mmj279)  

This article is cited in 34 scientific papers (total in 34 papers)

The Jacobian conjecture is stably equivalent to the Dixmier conjecture

A. Ya. Kanel-Belovab, M. L. Kontsevichc

a Moscow Institute of Open Education
b Hebrew University of Jerusalem
c Institut des Hautes Études Scientifiques

Abstract: The paper is devoted to the proof of equivalence of Jacobian and Dixmier conjectures. We show that $2n$-dimensional Jacobian conjecture implies Dixmier conjecture for $W_n$. The proof uses “antiquantization”: positive characteristics and Poisson brackets on the center of Weyl algebra in characteristic $p$.

Key words and phrases: Poisson brackets, symplectic structure, quantization, polynomial automorphism, Weyl algebra, differential operator, Jacobian conjecture.

DOI: https://doi.org/10.17323/1609-4514-2007-7-2-209-218

Full text: http://www.ams.org/.../abst7-2-2007.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 16S32, 16S80, 14R15
Received: June 30, 2006
Language:

Citation: A. Ya. Kanel-Belov, M. L. Kontsevich, “The Jacobian conjecture is stably equivalent to the Dixmier conjecture”, Mosc. Math. J., 7:2 (2007), 209–218

Citation in format AMSBIB
\Bibitem{KanKon07}
\by A.~Ya.~Kanel-Belov, M.~L.~Kontsevich
\paper The Jacobian conjecture is stably equivalent to the Dixmier conjecture
\jour Mosc. Math.~J.
\yr 2007
\vol 7
\issue 2
\pages 209--218
\mathnet{http://mi.mathnet.ru/mmj279}
\crossref{https://doi.org/10.17323/1609-4514-2007-7-2-209-218}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2337879}
\zmath{https://zbmath.org/?q=an:1128.16014}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000261829300004}


Linking options:
  • http://mi.mathnet.ru/eng/mmj279
  • http://mi.mathnet.ru/eng/mmj/v7/i2/p209

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Related presentations:

    This publication is cited in the following articles:
    1. Bavula V.V., “The group of order preserving automorphisms of the ring of differential operators on a Laurent polynomial algebra in prime characteristic”, Proc. Amer. Math. Soc., 137:6 (2009), 1891–1898  crossref  mathscinet  zmath  isi  scopus
    2. Bavula V.V., “The group of automorphisms of the first Weyl algebra in prime characteristic and the restriction map”, Glasg. Math. J., 51:2 (2009), 263–274  crossref  mathscinet  zmath  isi  scopus
    3. Zhao Wenhua, “Generalizations of the image conjecture and the Mathieu conjecture”, J. Pure Appl. Algebra, 214:7 (2010), 1200–1216  crossref  mathscinet  zmath  isi  scopus
    4. Zhao Wenhua, “A generalization of Mathieu subspaces to modules of associative algebras”, Cent. Eur. J. Math., 8:6 (2010), 1132–1155  crossref  mathscinet  zmath  isi  scopus
    5. Zhao Wenhua, “Images of commuting differential operators of order one with constant leading coefficients”, J. Algebra, 324:2 (2010), 231–247  crossref  mathscinet  zmath  isi  scopus
    6. Bavula V.V., “Extensions of the Frobenius to the ring of differential operators on a polynomial algebra in prime characteristic”, Trans. Amer. Math. Soc., 363:1 (2011), 417–437  crossref  mathscinet  zmath  isi  scopus
    7. Bavula V.V., “On the eigenvector algebra of the product of elements with commutator one in the first Weyl algebra”, Math. Proc. Cambridge Philos. Soc., 151:2 (2011), 245–262  crossref  mathscinet  zmath  adsnasa  isi  scopus
    8. Backelin E., “Endomorphisms of quantized Weyl algebras”, Lett. Math. Phys., 97:3 (2011), 317–338  crossref  mathscinet  zmath  adsnasa  isi  scopus
    9. Umirbaev U., “Universal enveloping algebras and universal derivations of Poisson algebras”, J. Algebra, 354:1 (2012), 77–94  crossref  mathscinet  zmath  isi  elib  scopus
    10. Zhao W., “Mathieu subspaces of associative algebras”, J. Algebra, 350:1 (2012), 245–272  crossref  mathscinet  zmath  isi  scopus
    11. Tsuchimoto Y., “Norm Based Extension of Reflexive Modules Over Weyl Algebras”, Tohoku Math. J., 64:1 (2012), 61–77  crossref  mathscinet  zmath  isi  scopus
    12. Bavula V.V., “An Analogue of the Conjecture of Dixmier Is True for the Algebra of Polynomial Integro-Differential Operators”, J. Algebra, 372 (2012), 237–250  crossref  mathscinet  zmath  isi  scopus
    13. Bavula V.V., “K-1(S-1) and the Group of Automorphisms of the Algebra S-2 of One-Sided Inverses of a Polynomial Algebra in Two Variables”, J. K-Theory, 10:3 (2012), 583–601  crossref  mathscinet  zmath  isi  scopus
    14. Bavula V.V., “Every Monomorphism of the Lie Algebra of Triangular Polynomial Derivations Is an Automorphism”, C. R. Math., 350:11-12 (2012), 553–556  crossref  mathscinet  zmath  isi  scopus
    15. Makar-Limanov L., “A Conjecture of Bavula on Homomorphisms of the Weyl Algebras”, Linear Multilinear Algebra, 60:7, SI (2012), 787–796  crossref  mathscinet  zmath  isi  scopus
    16. Kitchin A.P., Launois S., “Endomorphisms of Quantum Generalized Weyl Algebras”, Lett. Math. Phys., 104:7 (2014), 837–848  crossref  mathscinet  zmath  isi  scopus
    17. Guccione J.A., Guccione J.J., Valqui Ch., “the Dixmier Conjecture and the Shape of Possible Counterexamples”, J. Algebra, 399 (2014), 581–633  crossref  mathscinet  zmath  isi  scopus
    18. Moskowicz V., “About Dixmier'S Conjecture”, J. Algebra. Appl., 14:10 (2015), 1550140  crossref  mathscinet  zmath  isi  scopus
    19. Tang X., “Algebra Endomorphisms and Derivations of Some Localized Down-Up Algebras”, J. Algebra. Appl., 14:3 (2015), 1550034  crossref  mathscinet  zmath  isi  elib  scopus
    20. Benkart G., Lopes S.A., Ondrus M., “a Parametric Family of Subalgebras of the Weyl Algebra i. Structure and Automorphisms”, Trans. Am. Math. Soc., 367:3 (2015), PII S0002-9947(2014)06144-8, 1993–2021  crossref  mathscinet  zmath  isi  elib
    21. Moskowicz V., Valqui Ch., “the Starred Dixmier Conjecture For a(1)”, Commun. Algebr., 43:8 (2015), 3073–3082  crossref  mathscinet  zmath  isi  scopus
    22. Lu JiaFeng, Wang XingTing, Zhuang GuangBin, “Dg Poisson Algebra and Its Universal Enveloping Algebra”, Sci. China-Math., 59:5 (2016), 849–860  crossref  mathscinet  zmath  isi  scopus
    23. Mauleshova G.S., Mironov A.E., “One-Point Commuting Difference Operators of Rank 1”, Dokl. Math., 93:1 (2016), 62–64  crossref  mathscinet  zmath  isi  elib  scopus
    24. A. E. Mironov, “Self-adjoint commuting differential operators of rank two”, Russian Math. Surveys, 71:4 (2016), 751–779  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    25. de Goursac A., Sportiello A., Tanasa A., “the Jacobian Conjecture, a Reduction of the Degree to the Quadratic Case”, Ann. Henri Poincare, 17:11 (2016), 3237–3254  crossref  mathscinet  zmath  isi  scopus
    26. Mironov A.E., Zheglov A.B., “Commuting Ordinary Differential Operators With Polynomial Coefficients and Automorphisms of the First Weyl Algebra”, Int. Math. Res. Notices, 2016, no. 10, 2974–2993  crossref  mathscinet  isi  scopus
    27. Lauritzen N., Thomsen J.F., “Two Properties of Endomorphisms of Weyl Algebras”, J. Algebra, 479 (2017), 137–158  crossref  mathscinet  zmath  isi  scopus
    28. Negron C., “the Derived Picard Group of An Affine Azumaya Algebra”, Sel. Math.-New Ser., 23:2 (2017), 1449–1468  crossref  mathscinet  zmath  isi  scopus
    29. Sharygin G., “Deformation Quantization and the Action of Poisson Vector Fields”, Lobachevskii J. Math., 38:6 (2017), 1093–1107  crossref  zmath  isi  scopus
    30. Tang X., “Automorphisms For Some Symmetric Multiparameter Quantized Weyl Algebras and Their Localizations”, Algebr. Colloq., 24:3 (2017), 419–438  crossref  zmath  isi  scopus
    31. Kanel-Belov A., Yu J.-T., Elishev A., “On the Augmentation Topology of Automorphism Groups of Affine Spaces and Algebras”, Int. J. Algebr. Comput., 28:8, SI (2018), 1449–1485  crossref  mathscinet  zmath  isi  scopus
    32. Tang X., “The Automorphism Groups For a Family of Generalized Weyl Algebras”, J. Algebra. Appl., 17:8 (2018), 1850142  crossref  mathscinet  zmath  isi  scopus
    33. Le Stum B., Quiros A., “Formal Confluence of Quantum Differential Operators”, Pac. J. Math., 292:2 (2018), 427–478  crossref  mathscinet  zmath  isi  scopus
    34. Belov A.K., Razavinia F., Zhang W., “Bergman'S Centralizer Theorem and Quantization”, Commun. Algebr., 46:5 (2018), 2123–2129  crossref  mathscinet  zmath  isi  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:812
    References:96

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019