RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2007, Volume 7, Number 2, Pages 281–325 (Mi mmj284)  

This article is cited in 4 scientific papers (total in 4 papers)

Restricted version of the infinitesimal Hilbert 16th problem

A. A. Glutsyukab, Yu. S. Ilyashenkoc

a CNRS — Unit of Mathematics, Pure and Applied
b Laboratoire J.-V. Poncelet, Independent University of Moscow
c Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: The paper deals with an abelian integral of a polynomial 1-form along a family of real ovals of a polynomial (hamiltonian) in two variables (the integral is considered as a function of value of the Hamiltonian). We give an explicit upper bound on the number of its zeroes (assuming the Hamiltonian ultra-Morse of arbitrary degree and ranging in a compact subset in the space of ultra-Morse polynomials of a given degree, and that the form has smaller degree). This bound depends on the choice of the compact set and is exponential in the fourth power of the degree.

Key words and phrases: Two-dimensional polynomial Hamiltonian vector field, oval, polynomial 1-form, Abelian integral, complex level curve, critical value, vanishing cycle.

DOI: https://doi.org/10.17323/1609-4514-2007-7-2-281-325

Full text: http://www.ams.org/.../abst7-2-2007.html
References: PDF file   HTML file

Bibliographic databases:

MSC: Primary 58F21; 14K20; Secondary 34C05
Received: May 24, 2006
Language:

Citation: A. A. Glutsyuk, Yu. S. Ilyashenko, “Restricted version of the infinitesimal Hilbert 16th problem”, Mosc. Math. J., 7:2 (2007), 281–325

Citation in format AMSBIB
\Bibitem{GluIly07}
\by A.~A.~Glutsyuk, Yu.~S.~Ilyashenko
\paper Restricted version of the infinitesimal Hilbert 16th problem
\jour Mosc. Math.~J.
\yr 2007
\vol 7
\issue 2
\pages 281--325
\mathnet{http://mi.mathnet.ru/mmj284}
\crossref{https://doi.org/10.17323/1609-4514-2007-7-2-281-325}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2337884}
\zmath{https://zbmath.org/?q=an:1134.34019}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000261829300009}


Linking options:
  • http://mi.mathnet.ru/eng/mmj284
  • http://mi.mathnet.ru/eng/mmj/v7/i2/p281

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ilyashenko Yu., “Some open problems in real and complex dynamical systems”, Nonlinearity, 21:7 (2008), T101–T107  crossref  mathscinet  zmath  isi  scopus
    2. Binyamini G., Yakovenko S., “Polynomial bounds for the oscillation of solutions of Fuchsian systems”, Ann Inst Fourier (Grenoble), 59:7 (2009), 2891–2926  crossref  mathscinet  zmath  isi
    3. Horozov E., Mihajlova A., “An improved estimate for the number of zeros of Abelian integrals for cubic Hamiltonians”, Nonlinearity, 23:12 (2010), 3053–3069  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    4. Binyamini G., Novikov D., Yakovenko S., “On the number of zeros of Abelian integrals”, Invent. Math., 181:2 (2010), 227–289  crossref  mathscinet  zmath  isi  elib  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:334
    References:55

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020