RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2001, Volume 1, Number 4, Pages 521–537 (Mi mmj34)  

This article is cited in 9 scientific papers (total in 9 papers)

Mixed spectrum reparameterizations of linear flows on $\mathbb T^2$

B. R. Fayadab, A. B. Katoka, A. Windsora

a Department of Mathematics, Pennsylvania State University
b Université Paris 13

Abstract: We prove the existence of mixed spectrum $C^\infty$ reparameterizations of any linear flow on $\mathbb T^2$ with Liouville rotation number. For a restricted class of Liouville rotation numbers, we prove the existence of mixed spectrum real-analytic reparameterizations.

Key words and phrases: Mixed spectrum, reparameterization, special flow, Liouville, cocycle.

DOI: https://doi.org/10.17323/1609-4514-2001-1-4-521-537

Full text: http://www.ams.org/.../abst1-4-2001.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 37A20, 37A45, 37C05
Received: September 26, 2001; in revised form December 23, 2001
Language:

Citation: B. R. Fayad, A. B. Katok, A. Windsor, “Mixed spectrum reparameterizations of linear flows on $\mathbb T^2$”, Mosc. Math. J., 1:4 (2001), 521–537

Citation in format AMSBIB
\Bibitem{FayKatWin01}
\by B.~R.~Fayad, A.~B.~Katok, A.~Windsor
\paper Mixed spectrum reparameterizations of linear flows on~$\mathbb T^2$
\jour Mosc. Math.~J.
\yr 2001
\vol 1
\issue 4
\pages 521--537
\mathnet{http://mi.mathnet.ru/mmj34}
\crossref{https://doi.org/10.17323/1609-4514-2001-1-4-521-537}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1901073}
\zmath{https://zbmath.org/?q=an:1123.37300}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000208587600003}
\elib{http://elibrary.ru/item.asp?id=8379085}


Linking options:
  • http://mi.mathnet.ru/eng/mmj34
  • http://mi.mathnet.ru/eng/mmj/v1/i4/p521

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Fraczek K., Lemanczyk M., “A class of special flows over irrational rotations which is disjoint from mixing flows”, Ergodic Theory and Dynamical Systems, 24:4 (2004), 1083–1095  crossref  mathscinet  zmath  isi
    2. Fraczek K., “Polynomial growth of the derivative for diffeomorphisms on tori”, Discrete and Continuous Dynamical Systems, 11:2–3 (2004), 489–516  crossref  mathscinet  zmath  isi
    3. Fayad B., “Smooth mixing flows with purely singular spectra”, Duke Mathematical Journal, 132:2 (2006), 371–391  crossref  mathscinet  zmath  isi
    4. A. V. Kochergin, “Nondegenerate Saddle Points and the Absence of Mixing in Flows on Surfaces”, Proc. Steklov Inst. Math., 256 (2007), 238–252  mathnet  crossref  mathscinet  zmath  elib  elib
    5. Fayad B., Windsor A., “A dichotomy between discrete and continuous spectrum for a class of special flows over rotations”, Journal of Modern Dynamics, 1:1 (2007), 107–122  crossref  mathscinet  zmath  isi
    6. Huguet G., de la Llave R., Sire Ya., “Computation of Whiskered Invariant Tori and their Associated Manifolds: New Fast Algorithms”, Discrete and Continuous Dynamical Systems, 32:4 (2012), 1309–1353  mathscinet  zmath  isi
    7. Tiedra De Aldecoa R., “Spectral Analysis of Time Changes of Horocycle Flows”, J. Mod. Dyn., 6:2 (2012), 275–285  crossref  mathscinet  zmath  isi
    8. You J., Zhou Q., “Embedding of Analytic Quasi-Periodic Cocycles Into Analytic Quasi-Periodic Linear Systems and its Applications”, Commun. Math. Phys., 323:3 (2013), 975–1005  crossref  mathscinet  zmath  isi
    9. Boubel Ch., Mounoud P., “Affine Transformations and Parallel Lightlike Vector Fields on Compact Lorentzian 3-Manifolds”, Trans. Am. Math. Soc., 368:3 (2016), 2223–2262  crossref  mathscinet  zmath  isi
  • Moscow Mathematical Journal
    Number of views:
    This page:152
    References:59

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019