RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2009, Volume 9, Number 2, Pages 305–323 (Mi mmj346)  

This article is cited in 9 scientific papers (total in 9 papers)

Adams operations and power structures

E. Gorsky

Moscow State University, Faculty of Mathematics and Mechanics, Department of Higher Geometry and Topology, Moscow, Russia,

Abstract: We study the relations between Adams operation on a lambda-ring and the power structure on it, introduced by S. Gusein-Zade, I. Luengo and A. Melle-Hernández. We give the explicit equations expressing them by each other. An interpretation of the formula of E. Getzler for the equivariant Euler characteristics of configuration spaces is also given.

Key words and phrases: $\lambda$-rings, Adams operations, plethysms, power structures, moduli of curves.

DOI: https://doi.org/10.17323/1609-4514-2009-9-2-305-323

Full text: http://www.ams.org/.../abst9-2-2009.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 55S15, 19L20, 05E05, 14H10
Language:

Citation: E. Gorsky, “Adams operations and power structures”, Mosc. Math. J., 9:2 (2009), 305–323

Citation in format AMSBIB
\Bibitem{Gor09}
\by E.~Gorsky
\paper Adams operations and power structures
\jour Mosc. Math.~J.
\yr 2009
\vol 9
\issue 2
\pages 305--323
\mathnet{http://mi.mathnet.ru/mmj346}
\crossref{https://doi.org/10.17323/1609-4514-2009-9-2-305-323}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2568440}
\zmath{https://zbmath.org/?q=an:1184.55006}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000271541500005}


Linking options:
  • http://mi.mathnet.ru/eng/mmj346
  • http://mi.mathnet.ru/eng/mmj/v9/i2/p305

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Maxim L. Schuermann J., “Twisted Genera of Symmetric Products”, Sel. Math.-New Ser., 18:1 (2012), 283–317  crossref  mathscinet  zmath  isi  elib  scopus
    2. Cappell S., Maxim L., Ohmoto T., Schuermann J., Yokura Sh., “Characteristic Classes of Hilbert Schemes of Points via Symmetric Products”, Geom. Topol., 17:2 (2013), 1165–1198  crossref  mathscinet  zmath  isi  elib  scopus
    3. Gorsky E., “The Equivariant Euler Characteristic of Moduli Spaces”, Adv. Math., 250 (2014), 588–595  crossref  mathscinet  zmath  isi  elib  scopus
    4. Ramachandran N., “Zeta Functions, Grothendieck Groups, and the Witt Ring”, Bull. Sci. Math., 139:6 (2015), 599–627  crossref  mathscinet  zmath  isi  elib  scopus
    5. Etingof P. Gorsky E. Losev I., “Representations of Rational Cherednik Algebras With Minimal Support and Torus Knots”, Adv. Math., 277 (2015), 124–180  crossref  mathscinet  zmath  isi  elib  scopus
    6. S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Equivariant versions of higher order orbifold Euler characteristics”, Mosc. Math. J., 16:4 (2016), 751–765  mathnet  mathscinet
    7. S. M. Gusein-Zade, “Equivariant analogues of the Euler characteristic and Macdonald type equations”, Russian Math. Surveys, 72:1 (2017), 1–32  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. Gusein-Zade S.M., Luengo I., Melle-Hernandez A., “Power Structure Over the Grothendieck Ring of Maps”, Rev. Mat. Complut., 31:3 (2018), 595–609  crossref  mathscinet  zmath  isi  scopus
    9. Maxim L. Schuermann J., “Equivariant Characteristic Classes of External and Symmetric Products of Varieties”, Geom. Topol., 22:1 (2018), 471–515  crossref  mathscinet  zmath  isi  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:184
    References:35

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019