|
This article is cited in 2 scientific papers (total in 2 papers)
Weight multiplicity polynomials of multi-variable Weyl modules
S. Loktev Institute for Theoretical and Experimental Physics, Moscow, Russia
Abstract:
This paper is based on the observation that dimension of weight spaces of multi-variable Weyl modules depends polynomially on the highest weight. We support this conjecture by various explicit answers for up to three variable cases and discuss the underlying combinatorics.
Key words and phrases:
current algebra, Weyl module.
DOI:
https://doi.org/10.17323/1609-4514-2010-10-1-215-229
Full text:
http://www.ams.org/.../abst10-1-2010.html
References:
PDF file
HTML file
Bibliographic databases:
MSC: 17B65, 17B10 Received: June 6, 2008; in revised form July 2, 2008
Language:
Citation:
S. Loktev, “Weight multiplicity polynomials of multi-variable Weyl modules”, Mosc. Math. J., 10:1 (2010), 215–229
Citation in format AMSBIB
\Bibitem{Lok10}
\by S.~Loktev
\paper Weight multiplicity polynomials of multi-variable Weyl modules
\jour Mosc. Math.~J.
\yr 2010
\vol 10
\issue 1
\pages 215--229
\mathnet{http://mi.mathnet.ru/mmj378}
\crossref{https://doi.org/10.17323/1609-4514-2010-10-1-215-229}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2668833}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000275847400006}
Linking options:
http://mi.mathnet.ru/eng/mmj378 http://mi.mathnet.ru/eng/mmj/v10/i1/p215
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Bergeron F., “Multivariate Diagonal Coinvariant Spaces for Complex Reflection Groups”, Adv. Math., 239 (2013), 97–108
-
Lenczewski R., Salapata R., “Multivariate Fuss-Narayana Polynomials and their Application to Random Matrices”, Electron. J. Comb., 20:2 (2013), P41
|
Number of views: |
This page: | 141 | References: | 58 |
|