RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2010, Volume 10, Number 2, Pages 469–475 (Mi mmj388)  

This article is cited in 4 scientific papers (total in 4 papers)

A Selberg integral type formula for an $\mathfrak{sl}_2$ one-dimensional space of conformal blocks

A. Varchenko

Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Abstract: For distinct complex numbers $z_1,…,z_{2N}$, we give a polynomial $P(y_1,…,y_{2N})$ in the variables $y_1,…,y_{2N}$ which is homogeneous of degree $N$, linear with respect to each variable, $\mathfrak{sl}_2$-invariant with respect to a natural $\mathfrak{sl}_2$-action, and is of order $N-1$ at $(y_1,…,y_{2N})=(z_1,…,z_{2N})$.
We give also a Selberg integral type formula for the associated one-dimensional space of conformal blocks.

Key words and phrases: conformal blocks, invariant polynomials.

DOI: https://doi.org/10.17323/1609-4514-2010-10-2-469-475

Full text: http://www.ams.org/.../abst10-2-2010.html
References: PDF file   HTML file

Bibliographic databases:

MSC: Primary 81T40, 33C70; Secondary 32S40, 52B30
Language:

Citation: A. Varchenko, “A Selberg integral type formula for an $\mathfrak{sl}_2$ one-dimensional space of conformal blocks”, Mosc. Math. J., 10:2 (2010), 469–475

Citation in format AMSBIB
\Bibitem{Var10}
\by A.~Varchenko
\paper A Selberg integral type formula for an $\mathfrak{sl}_2$ one-dimensional space of conformal blocks
\jour Mosc. Math.~J.
\yr 2010
\vol 10
\issue 2
\pages 469--475
\mathnet{http://mi.mathnet.ru/mmj388}
\crossref{https://doi.org/10.17323/1609-4514-2010-10-2-469-475}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2722806}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000279342400009}


Linking options:
  • http://mi.mathnet.ru/eng/mmj388
  • http://mi.mathnet.ru/eng/mmj/v10/i2/p469

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. N. Varchenko, R. Rimányi, V. O. Tarasov, V. V. Schechtman, “Cohomology of a flag variety as a Bethe algebra”, Funct. Anal. Appl., 45:4 (2011), 252–264  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    2. Rimanyi R., Tarasov V., Varchenko A., Zinn-Justin P., “Extended Joseph Polynomials, Quantized Conformal Blocks, and a Q-Selberg Type Integral”, J. Geom. Phys., 62:11 (2012), 2188–2207  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    3. Gorbounov V. Rimanyi R. Tarasov V. Varchenko A., “Quantum Cohomology of the Cotangent Bundle of a Flag Variety as a Yangian Bethe Algebra”, J. Geom. Phys., 74 (2013), 56–86  crossref  mathscinet  zmath  isi  elib  scopus
    4. Rimanyi R. Tarasov V. Varchenko A., “Cohomology Classes of Conormal Bundles of Schubert Varieties and Yangian Weight Functions”, Math. Z., 277:3-4 (2014), 1085–1104  crossref  mathscinet  zmath  isi  elib  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:154
    References:42

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020