RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2001, Volume 1, Number 4, Pages 601–604 (Mi mmj39)  

This article is cited in 7 scientific papers (total in 7 papers)

An application of potential analysis to minimal surfaces

N. S. Nadirashvili

University of Chicago

Abstract: We study complete proper minimal immersions in a bounded domain in Euclidean space. We show that for certain domains there are no such immersions. The existence of such unproper immersions is known.

Key words and phrases: Minimal surface, Liouville theorem, proper minimal immersion.

DOI: https://doi.org/10.17323/1609-4514-2001-1-4-601-604

Full text: http://www.ams.org/.../abst1-4-2001.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 31, 58
Language:

Citation: N. S. Nadirashvili, “An application of potential analysis to minimal surfaces”, Mosc. Math. J., 1:4 (2001), 601–604

Citation in format AMSBIB
\Bibitem{Nad01}
\by N.~S.~Nadirashvili
\paper An application of potential analysis to minimal surfaces
\jour Mosc. Math.~J.
\yr 2001
\vol 1
\issue 4
\pages 601--604
\mathnet{http://mi.mathnet.ru/mmj39}
\crossref{https://doi.org/10.17323/1609-4514-2001-1-4-601-604}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1901078}
\zmath{https://zbmath.org/?q=an:1011.53008}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000208587600008}


Linking options:
  • http://mi.mathnet.ru/eng/mmj39
  • http://mi.mathnet.ru/eng/mmj/v1/i4/p601

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Colding T.H., Minicozzi W.P., “Minimal submanifolds”, Bulletin of the London Mathematical Society, 38:3 (2006), 353–395  crossref  mathscinet  zmath  isi
    2. Alarcon A., Nadirashvili N., “Limit sets for complete minimal immersions”, Mathematische Zeitschrift, 258:1 (2008), 107–113  crossref  mathscinet  zmath  isi  elib
    3. Alarcon A., “Compact Complete Minimal Immersions in R-3”, Trans Amer Math Soc, 362:8 (2010), 4063–4076  crossref  mathscinet  zmath  isi  elib
    4. Alarcon A., “Compact complete proper minimal immersions in strictly convex bounded regular domains of R-3”, XVIII International Fall Workshop on Geometry and Physics, AIP Conference Proceedings, 1260, 2010, 105–111  crossref  mathscinet  zmath  adsnasa  isi
    5. Alarcon A., Fernandez I., “Complete minimal surfaces in R-3 with a prescribed coordinate function”, Differential Geom Appl, 29, Suppl. 1 (2011), S9–S15  crossref  mathscinet  zmath  isi
    6. Alarcon A., Lopez F.J., “Compact Complete Null Curves in Complex 3-Space”, Isr. J. Math., 195:1 (2013), 97–122  crossref  mathscinet  zmath  isi  elib
    7. Alarcon A., Drnovsek B.D., Forstneric F., Lopez F.J., “Every Bordered Riemann Surface Is a Complete Conformal Minimal Surface Bounded By Jordan Curves”, Proc. London Math. Soc., 111:4 (2015), 851–886  crossref  mathscinet  zmath  isi  elib
  • Moscow Mathematical Journal
    Number of views:
    This page:157
    References:40

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019