RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2011, Volume 11, Number 2, Pages 185–204 (Mi mmj417)  

This article is cited in 6 scientific papers (total in 6 papers)

Reconstruction of higher-dimensional function fields

Fedor Bogomolovab, Yuri Tschinkelb

a Steklov Mathematical Institute, Moscow, Russia
b Courant Institute of Mathematical Sciences, N.Y.U., New York, NY, U.S.A.

Abstract: We determine the function fields of varieties of dimension $\ge2$ defined over the algebraic closure of $\mathbb F_p$, modulo purely inseparable extensions, from the quotient by the second term in the lower central series of their pro-$\ell$ Galois groups.

Key words and phrases: Galois groups, function fields.

DOI: https://doi.org/10.17323/1609-4514-2011-11-2-185-204

Full text: http://www.ams.org/.../abst11-2-2011.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 12F10, 14E08, 19C20, 19C30
Received: July 28, 2010; in revised form November 11, 2010
Language:

Citation: Fedor Bogomolov, Yuri Tschinkel, “Reconstruction of higher-dimensional function fields”, Mosc. Math. J., 11:2 (2011), 185–204

Citation in format AMSBIB
\Bibitem{BogTsc11}
\by Fedor~Bogomolov, Yuri~Tschinkel
\paper Reconstruction of higher-dimensional function fields
\jour Mosc. Math.~J.
\yr 2011
\vol 11
\issue 2
\pages 185--204
\mathnet{http://mi.mathnet.ru/mmj417}
\crossref{https://doi.org/10.17323/1609-4514-2011-11-2-185-204}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2859233}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000288967100001}


Linking options:
  • http://mi.mathnet.ru/eng/mmj417
  • http://mi.mathnet.ru/eng/mmj/v11/i2/p185

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bogomolov F., Tschinkel Yu., “Galois Theory and Projective Geometry”, Commun. Pure Appl. Math., 66:9 (2013), 1335–1359  crossref  mathscinet  zmath  isi  elib  scopus
    2. Minac J., Swallow J., Topaz A., “Galois Module Structure of (l(N))Th Classes of Fields”, Bull. London Math. Soc., 46:1 (2014), 143–154  crossref  mathscinet  zmath  isi  elib  scopus
    3. Fop F., Topaz A., “on the Minimized Decomposition Theory of Valuations”, Bull. Math. Soc. Sci. Math. Roum., 58:3 (2015), 331–357  mathscinet  isi
    4. A. Topaz, “Reconstructing function fields from rational quotients of mod-$\ell$ Galois groups”, Math. Ann., 366:1-2 (2016), 337–385  crossref  mathscinet  zmath  isi  scopus
    5. Topaz A., “Abelian-By-Central Galois Groups of Fields i: a Formal Description”, Trans. Am. Math. Soc., 369:4 (2017), 2721–2745  crossref  mathscinet  zmath  isi  scopus
    6. Minac J., Nguyen Duy Tan, “Construction of Unipotent Galois Extensions and Massey Products”, Adv. Math., 304 (2017), 1021–1054  crossref  mathscinet  zmath  isi  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:249
    References:36

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019