RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2011, Volume 11, Number 2, Pages 265–283 (Mi mmj421)  

This article is cited in 4 scientific papers (total in 4 papers)

Newton polytopes for horospherical spaces

Kiumars Kaveha, A. G. Khovanskiibcd

a Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
b Institute for Systems Analysis, Russian Academy of Sciences
c Independent University of Moscow
d Department of Mathematics, University of Toronto, Toronto, Canada

Abstract: A subgroup $H$ of a reductive group $G$ is horospherical if it contains a maximal unipotent subgroup. We describe the Grothendieck semigroup of invariant subspaces of regular functions on $G/H$ as a semigroup of convex polytopes. From this we obtain a formula for the number of solutions of a system of equations $f_1(x)=…=f_n(x)=0$ on $G/H$, where $n=\dim(G/H)$ and each $f_i$ is a generic element from an invariant subspace $L_i$ of regular functions on $G/H$. The answer is in terms of the mixed volume of polytopes associated to the $L_i$. This generalizes the Bernstein–Kushnirenko theorem from toric geometry. We also obtain similar results for the intersection numbers of invariant linear systems on $G/H$.

Key words and phrases: reductive group, moment polytope, Newton polytope, horospherical variety, Bernstein–Kushnirenko theorem, Grothendieck group.

Full text: http://www.ams.org/.../abst11-2-2011.html
References: PDF file   HTML file

Bibliographic databases:
MSC: 14M17, 14M25
Received: July 14, 2010; in revised form October 18, 2010
Language:

Citation: Kiumars Kaveh, A. G. Khovanskii, “Newton polytopes for horospherical spaces”, Mosc. Math. J., 11:2 (2011), 265–283

Citation in format AMSBIB
\Bibitem{KavKho11}
\by Kiumars~Kaveh, A.~G.~Khovanskii
\paper Newton polytopes for horospherical spaces
\jour Mosc. Math.~J.
\yr 2011
\vol 11
\issue 2
\pages 265--283
\mathnet{http://mi.mathnet.ru/mmj421}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2859237}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000288967100005}


Linking options:
  • http://mi.mathnet.ru/eng/mmj421
  • http://mi.mathnet.ru/eng/mmj/v11/i2/p265

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. G. Khovanskii, “Intersection theory and Hilbert function”, Funct. Anal. Appl., 45:4 (2011), 305–315  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    2. Kaveh K., Khovanskii A.G., “Newton-Okounkov Bodies, Semigroups of Integral Points, Graded Algebras and Intersection Theory”, Ann. Math., 176:2 (2012), 925–978  crossref  mathscinet  zmath  isi  elib  scopus
    3. Kaveh K., Khovanskii A., “Algebraic Equations and Convex Bodies”, Perspectives in Analysis, Geometry, and Topology: on the Occasion of the 60th Birthday of Oleg Viro, Progress in Mathematics, 296, eds. Itenberg I., Joricke B., Passare M., Birkhauser Verlag Ag, 2012, 263–282  crossref  mathscinet  zmath  isi  scopus
    4. K. Kaveh, A. G. Khovanskii, “Complete intersections in spherical varieties”, Sel. Math.-New Ser., 22:4, SI (2016), 2099–2141  crossref  mathscinet  zmath  isi  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:245
    References:50

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020