Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2011, Volume 11, Number 3, Pages 521–530 (Mi mmj430)  

This article is cited in 3 scientific papers (total in 3 papers)

Total rigidity of generic quadratic vector fields

Yu. Ilyashenkoabcd, V. Moldavskisde

a Steklov Math. Institute, Moscow, Russia
b Moscow Independent University
c Moscow State University
d Cornell University, US
e London, UK

Abstract: We consider a class of foliations on the complex projective plane that are determined by a quadratic vector field in a fixed affine neighborhood. Such foliations, as a rule, have an invariant line at infinity. Two foliations with singularities on $\mathbb CP^2$ are topologically equivalent provided that there exists a homeomorphism of the projective plane onto itself that preserves orientation both on the and in $\mathbb CP^2$ and brings the leaves of the first foliation to that of the second one. We prove that a generic foliation of this class may be topologically equivalent to but a finite number of foliations of the same class, modulo affine equivalence. This property is called total rigidity. A recent result of Lins Neto implies that the finite number above does not exceed 240.
This is the first of the two closely related papers. It deals with the rigidity properties of quadratic foliations, whilst the second one studies the foliations of higher degree.

Key words and phrases: foliations, topological equivalence, rigidity.

DOI: https://doi.org/10.17323/1609-4514-2011-11-3-521-530

Full text: http://www.ams.org/.../abst11-3-2011.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 37F75
Received: October 10, 2010
Language:

Citation: Yu. Ilyashenko, V. Moldavskis, “Total rigidity of generic quadratic vector fields”, Mosc. Math. J., 11:3 (2011), 521–530

Citation in format AMSBIB
\Bibitem{IlyMol11}
\by Yu.~Ilyashenko, V.~Moldavskis
\paper Total rigidity of generic quadratic vector fields
\jour Mosc. Math.~J.
\yr 2011
\vol 11
\issue 3
\pages 521--530
\mathnet{http://mi.mathnet.ru/mmj430}
\crossref{https://doi.org/10.17323/1609-4514-2011-11-3-521-530}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2894428}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000300365900006}


Linking options:
  • http://mi.mathnet.ru/eng/mmj430
  • http://mi.mathnet.ru/eng/mmj/v11/i3/p521

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Calsamiglia G., Deroin B., Frankel S., Guillot A., “Singular Sets of Holonomy Maps for Algebraic Foliations”, J. Eur. Math. Soc., 15:3 (2013), 1067–1099  crossref  mathscinet  zmath  isi  elib  scopus
    2. Ramirez V., “The Utmost Rigidity Property For Quadratic Foliations on P-2 With An Invariant Line”, Bol. Soc. Mat. Mex., 23:2 (2017), 759–813  crossref  mathscinet  zmath  isi
    3. Ramirez V., “Twin Vector Fields and Independence of Spectra For Quadratic Vector Fields”, J. Dyn. Control Syst., 23:3 (2017), 623–633  crossref  mathscinet  zmath  isi  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:170
    References:41

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021