RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2012, Volume 12, Number 1, Pages 49–54 (Mi mmj447)  

This article is cited in 3 scientific papers (total in 3 papers)

Orbifold Euler characteristics for dual invertible polynomials

Wolfgang Ebelinga, Sabir M. Gusein-Zadeb

a Leibniz Universität Hannover, Institut für Algebraische Geometrie, Hannover, Germany
b Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia

Abstract: To construct mirror symmetric Landau–Ginzburg models, P. Berglund, T. Hübsch and M. Henningson considered a pair $(f,G)$ consisting of an invertible polynomial $f$ and an abelian group $G$ of its symmetries together with a dual pair $(\widetilde f,\widetilde G)$. Here we study the reduced orbifold Euler characteristics of the Milnor fibres of $f$ and $\widetilde f$ with the actions of the groups $G$ and $\widetilde G$ respectively and show that they coincide up to a sign.

Key words and phrases: invertible polynomials, group actions, orbifold Euler characteristic.

Full text: http://www.ams.org/.../abst12-1-2012.html
References: PDF file   HTML file

Bibliographic databases:
MSC: 14J33, 32S55, 57R18
Received: September 11, 2010
Language:

Citation: Wolfgang Ebeling, Sabir M. Gusein-Zade, “Orbifold Euler characteristics for dual invertible polynomials”, Mosc. Math. J., 12:1 (2012), 49–54

Citation in format AMSBIB
\Bibitem{EbeGus12}
\by Wolfgang~Ebeling, Sabir~M.~Gusein-Zade
\paper Orbifold Euler characteristics for dual invertible polynomials
\jour Mosc. Math.~J.
\yr 2012
\vol 12
\issue 1
\pages 49--54
\mathnet{http://mi.mathnet.ru/mmj447}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2952425}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000309364900004}


Linking options:
  • http://mi.mathnet.ru/eng/mmj447
  • http://mi.mathnet.ru/eng/mmj/v12/i1/p49

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. W. Ebeling, S. M. Gusein-Zade, “Orbifold zeta functions for dual invertible polynomials”, Proc. Edinb. Math. Soc., 60:1 (2017), 99–106  crossref  mathscinet  zmath  isi  scopus
    2. W. Ebeling, “Homological mirror symmetry for singularities”, Representation Theory – Current Trends and Perspectives, EMS Ser. Congr. Rep., ed. H. Krause, P. Littelmann, G. Malle, K. H. Neeb, C. Schweigert, Eur. Math. Soc., 2017, 75–107  mathscinet  zmath  isi
    3. Ebeling W., Gusein-Zade S.M., “Enhanced Equivariant Saito Duality”, J. Algebra. Appl., 17:10 (2018), 1850181  crossref  mathscinet  zmath  isi  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:304
    References:38

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020