|
This article is cited in 30 scientific papers (total in 31 papers)
Totally nonfree actions and the infinite symmetric group
A. M. Vershikab a St. Petersburg Department of Steklov Institute of Mathematics
b Max Planck Institute, Bonn
Abstract:
We consider totally nonfree (TNF) actions of groups and the corresponding adjoint invariant (AD) measures on lattices of the subgroups of the given group. The main result is the description of all adjoint-invariant and TNF measures on the lattice of subgroups of the infinite symmetric group $S_\mathbb N$. The problem is closely related to the theory of characters and factor representations of groups.
Key words and phrases:
totally nonfree actions, infinite symmetric group, random subgroups.
DOI:
https://doi.org/10.17323/1609-4514-2012-12-1-193-212
Full text:
http://www.ams.org/.../abst12-1-2012.html
References:
PDF file
HTML file
Bibliographic databases:
MSC: 37A15, 20B35, 22D40 Received: October 4, 2011
Language:
Citation:
A. M. Vershik, “Totally nonfree actions and the infinite symmetric group”, Mosc. Math. J., 12:1 (2012), 193–212
Citation in format AMSBIB
\Bibitem{Ver12}
\by A.~M.~Vershik
\paper Totally nonfree actions and the infinite symmetric group
\jour Mosc. Math.~J.
\yr 2012
\vol 12
\issue 1
\pages 193--212
\mathnet{http://mi.mathnet.ru/mmj453}
\crossref{https://doi.org/10.17323/1609-4514-2012-12-1-193-212}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2952431}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000309364900010}
Linking options:
http://mi.mathnet.ru/eng/mmj453 http://mi.mathnet.ru/eng/mmj/v12/i1/p193
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Yu. A. Neretin, “A remark on representations of infinite symmetric groups”, J. Math. Sci. (N. Y.), 190:3 (2013), 464–467
-
V. M. Buchstaber, M. I. Gordin, I. A. Ibragimov, V. A. Kaimanovich, A. A. Kirillov, A. A. Lodkin, S. P. Novikov, A. Yu. Okounkov, G. I. Olshanski, F. V. Petrov, Ya. G. Sinai, L. D. Faddeev, S. V. Fomin, N. V. Tsilevich, Yu. V. Yakubovich, “Anatolii Moiseevich Vershik (on his 80th birthday)”, Russian Math. Surveys, 69:1 (2014), 165–179
-
Gorin V., Kerov S., Vershik A., “Finite Traces and Representations of the Group of Infinite Matrices Over a Finite Field”, Adv. Math., 254 (2014), 331–395
-
Bowen L., “Random Walks on Random Coset Spaces with Applications to Furstenberg Entropy”, Invent. Math., 196:2 (2014), 485–510
-
Abert M., Glasner Ya., Virag B., “Kesten's Theorem for Invariant Random Subgroups”, Duke Math. J., 163:3 (2014), 465–488
-
Grigorchuk R., Savchuk D., “Self-Similar Groups Acting Essentially Freely on the Boundary of the Binary Rooted Tree”, Group Theory, Combinatorics, and Computing, Contemporary Mathematics, 611, eds. Morse R., NikolovaPopova D., Witherspoon S., Amer Mathematical Soc, 2014, 9–48
-
Thomas S., Tucker-Drob R., “Invariant Random Subgroups of Strictly Diagonal Limits of Finite Symmetric Groups”, Bull. London Math. Soc., 46:5 (2014), 1007–1020
-
Dudko A., Medynets K., “Finite Factor Representations of Higman-Thompson Groups”, Group. Geom. Dyn., 8:2 (2014), 375–389
-
Yu. A. Neretin, “Infinite symmetric groups and combinatorial constructions of topological field theory type”, Russian Math. Surveys, 70:4 (2015), 715–773
-
M. G. Benli, R. I. Grigorchuk, T. V. Nagnibeda, “Universal Groups of Intermediate Growth and Their Invariant Random Subgroups”, Funct. Anal. Appl., 49:3 (2015), 159–174
-
A. M. Vershik, N. I. Nessonov, “Stable representations of the infinite symmetric group”, Izv. Math., 79:6 (2015), 1184–1214
-
Bowen L., Grigorchuk R., Kravchenko R., “Invariant Random Subgroups of Lamplighter Groups”, Isr. J. Math., 207:2 (2015), 763–782
-
D'Angeli D., Rodaro E., “a Geometric Approach To (Semi)-Groups Defined By Automata Via Dual Transducers”, Geod. Dedic., 174:1 (2015), 375–400
-
Cannizzo J., “the Boundary Action of a Sofic Random Subgroup of the Free Group”, Group. Geom. Dyn., 9:3 (2015), 683–709
-
Bowen L., “Invariant Random Subgroups of the Free Group”, Group. Geom. Dyn., 9:3 (2015), 891–916
-
Glasner E., Weiss B., “Uniformly Recurrent Subgroups”, Recent Trends in Ergodic Theory and Dynamical Systems, Contemporary Mathematics, 631, eds. Bhattacharya S., Das T., Ghosh A., Shah R., Amer Mathematical Soc, 2015, 63–75
-
D. D'Angeli, E. Rodaro, “Freeness of automaton groups vs boundary dynamics”, J. Algebra, 462 (2016), 115–136
-
A. M. Vershik, “Asymptotic theory of path spaces of graded graphs and its applications”, Jap. J. Math., 11:2 (2016), 151–218
-
D. Creutz, “Stabilizers of actions of lattices in products of groups”, Ergod. Theory Dyn. Syst., 37:4 (2017), 1133–1186
-
I. Biringer, O. Tamuz, “Unimodularity of invariant random subgroups”, Trans. Am. Math. Soc., 369:6 (2017), 4043–4061
-
D. Creutz, J. Peterson, “Stabilizers of ergodic actions of lattices and commensurators”, Trans. Am. Math. Soc., 369:6 (2017), 4119–4166
-
Ya. Glasner, “Invariant random subgroups of linear groups”, Isr. J. Math., 219:1 (2017), 215–270
-
L. Bowen, R. Grigorchuk, R. Kravchenko, “Characteristic random subgroups of geometric groups and free abelian groups of infinite rank”, Trans. Am. Math. Soc., 369:2 (2017), 755–781
-
I. Biringer, J. Raimbault, “Ends of unimodular random manifolds”, Proc. Amer. Math. Soc., 145:9 (2017), 4021–4029
-
M. Abert, N. Bergeron, I. Biringer, Ts. Gelander, N. Nikolov, J. Raimbault, I. Samet, “On the growth of $L^2$-invariants for sequences of lattices in Lie groups”, Ann. Math., 185:3 (2017), 711–790
-
Hartman Ya., Yadin A., “Furstenberg Entropy of Intersectional Invariant Random Subgroups”, Compos. Math., 154:10 (2018), 2239–2265
-
D'Angeli D., Rodaro E., “Fragile Words and Cayley Type Transducers”, Int. J. Group Theory, 7:3, 3 (2018), 95–109
-
Dudko A., Grigorchuk R., “On Diagonal Actions of Branch Groups and the Corresponding Characters”, J. Funct. Anal., 274:11 (2018), 3033–3055
-
Thomas S., Tucker-Drob R., “Invariant Random Subgroups of Inductive Limits of Finite Alternating Groups”, J. Algebra, 503 (2018), 474–533
-
Elek G., “Uniformly Recurrent Subgroups and Simple C-Algebras”, J. Funct. Anal., 274:6 (2018), 1657–1689
-
Dudko A., Medynets K., “on Invariant Random Subgroups of Block-Diagonal Limits of Symmetric Groups”, Proc. Amer. Math. Soc., 147:6 (2019), 2481–2494
|
Number of views: |
This page: | 260 | References: | 44 |
|