RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2012, Volume 12, Number 3, Pages 605–620 (Mi mmj460)  

This article is cited in 9 scientific papers (total in 9 papers)

The cascade of orthogonal roots and the coadjoint structure of the nilradical of a Borel subgroup of a semisimple Lie group

Bertram Kostant

Department of Mathematics, M.I.T., Cambridge, MA 02139

Abstract: Let $G$ be a semisimple Lie group and let $\mathfrak{g}= \mathfrak{n}_- + \mathfrak{h} +\mathfrak{n}$ be a triangular decomposition of $\mathfrak{g}= Lie G$. Let $\mathfrak{b} = \mathfrak{h} +\mathfrak{n}$ and let $H,N,B$ be Lie subgroups of $G$ corresponding respectively to $\mathfrak{h}$, $\mathfrak{n}$ and $\mathfrak{b}$. We may identify $\mathfrak{n}_-$ with the dual space to $\mathfrak{n}$. The coadjoint action of $N$ on $\mathfrak{n}_-$ extends to an action of $B$ on $\mathfrak{n}_-$. There exists a unique nonempty Zariski open orbit $X$ of $B$ on $\mathfrak{n}_-$. Any $N$-orbit in $X$ is a maximal coadjoint orbit of $N$ in $\mathfrak{n}_-$. The cascade of orthogonal roots defines a cross-section $\mathfrak{r}_-^{\times}$ of the set of such orbits leading to a decomposition
$$X = N/R\times \mathfrak{r}_-^{\times}.$$
This decomposition, among other things, establishes the structure of $S(\mathfrak{n})^{\mathfrak{n}}$ as a polynomial ring generated by the prime polynomials of $H$-weight vectors in $S(\mathfrak{n})^{\mathfrak{n}}$. It also leads to the multiplicity 1 of $H$ weights in $S(\mathfrak{n})^{\mathfrak{n}}$.

Key words and phrases: Cascade of orthogonal roots, Borel subgroups, nilpotent coadjoint action.

DOI: https://doi.org/10.17323/1609-4514-2012-12-3-605-620

Full text: http://www.ams.org/.../abst12-3-2012.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 20C, 14L24
Received: February 1, 2011
Language:

Citation: Bertram Kostant, “The cascade of orthogonal roots and the coadjoint structure of the nilradical of a Borel subgroup of a semisimple Lie group”, Mosc. Math. J., 12:3 (2012), 605–620

Citation in format AMSBIB
\Bibitem{Kos12}
\by Bertram~Kostant
\paper The cascade of orthogonal roots and the coadjoint structure of the nilradical of a Borel subgroup of a semisimple Lie group
\jour Mosc. Math.~J.
\yr 2012
\vol 12
\issue 3
\pages 605--620
\mathnet{http://mi.mathnet.ru/mmj460}
\crossref{https://doi.org/10.17323/1609-4514-2012-12-3-605-620}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3024825}
\zmath{https://zbmath.org/?q=an:1260.14058}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000309366400008}


Linking options:
  • http://mi.mathnet.ru/eng/mmj460
  • http://mi.mathnet.ru/eng/mmj/v12/i3/p605

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yakimov M., “on the Spectra of Quantum Groups”, Mem. Am. Math. Soc., 229:1078 (2014), 1+  crossref  isi
    2. Wolf J.A., “the Plancherel Formula For Minimal Parabolic Subgroups”, J. Lie Theory, 24:3 (2014), 791–808  zmath  isi
    3. M. V. Ignatyev, I. Penkov, “Infinite Kostant cascades and centrally generated primitive ideals of $U(\mathfrak n)$ in types $A_{\infty}, C_{\infty}$”, J. Algebra, 447 (2016), 109–134  crossref  zmath  isi  elib  scopus
    4. G. Dimitrov, V. Tsanov, “Homogeneous hypercomplex structures I–the compact Lie groups”, Transform. Groups, 21:3 (2016), 725–762  crossref  mathscinet  zmath  isi  scopus
    5. J. A. Thorne, T. Kaletha, “Arithmetic invariant theory and 2-descent for plane quartic curves”, Algebr. Number Theory, 10:7 (2016), 1373–1413  crossref  mathscinet  zmath  isi  scopus
    6. D. Panyushev, “On the orbits of a Borel subgroup in abelian ideals”, Transform. Groups, 22:2 (2017), 503–524  crossref  mathscinet  zmath  isi  scopus
    7. Kruglikov B., The D., “Jet-Determination of Symmetries of Parabolic Geometries”, Math. Ann., 371:3-4 (2018), 1575–1613  crossref  mathscinet  zmath  isi  scopus
    8. Lusztig G., “Lifting Involutions in a Weyl Group to the Torus Normalizer”, Represent. Theory, 22 (2018), 27–44  crossref  mathscinet  zmath  isi  scopus
    9. Baerligea Ch., “Quasi-Homogeneity of the Moduli Space of Stable Maps to Homogeneous Spaces”, Doc. Math., 23 (2018), 697–745  mathscinet  zmath  isi
  • Moscow Mathematical Journal
    Number of views:
    This page:98
    References:32

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020