RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2012, Volume 12, Number 3, Pages 633–666 (Mi mmj462)  

This article is cited in 5 scientific papers (total in 5 papers)

Handsaw quiver varieties and finite $W$-algebras

Hiraku Nakajima

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

Abstract: Following Braverman–Finkelberg–Feigin–Rybnikov (arXiv:1008.3655), we study the convolution algebra of a handsaw quiver variety, a.k.a. a parabolic Laumon space, and a finite $W$-algebra of type $A$. This is a finite analog of the AGT conjecture on $4$-dimensional supersymmetric Yang–Mills theory with surface operators. Our new observation is that the $\mathbb{C}^*$-fixed point set of a handsaw quiver variety is isomorphic to a graded quiver variety of type $A$, which was introduced by the author in connection with the representation theory of a quantum affine algebra. As an application, simple modules of the $W$-algebra are described in terms of $IC$ sheaves of graded quiver varieties of type $A$, which were known to be related to Kazhdan–Lusztig polynomials. This gives a new proof of a conjecture by Brundan–Kleshchev on composition multiplicities on Verma modules, which was proved by Losev, in a wider context, by a different method.

Key words and phrases: quiver variety, shifted Yangian, finite $W$-algebra, quantum affine algebra, Kazhdan–Lusztig polynomial.

DOI: https://doi.org/10.17323/1609-4514-2012-12-3-633-666

Full text: http://www.ams.org/.../abst12-3-2012.html
References: PDF file   HTML file

Bibliographic databases:

MSC: Primary 17B37; Secondary 14D21
Received: July 24, 2011
Language:

Citation: Hiraku Nakajima, “Handsaw quiver varieties and finite $W$-algebras”, Mosc. Math. J., 12:3 (2012), 633–666

Citation in format AMSBIB
\Bibitem{Nak12}
\by Hiraku~Nakajima
\paper Handsaw quiver varieties and finite $W$-algebras
\jour Mosc. Math.~J.
\yr 2012
\vol 12
\issue 3
\pages 633--666
\mathnet{http://mi.mathnet.ru/mmj462}
\crossref{https://doi.org/10.17323/1609-4514-2012-12-3-633-666}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3024827}
\zmath{https://zbmath.org/?q=an:06126191}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000309366400010}


Linking options:
  • http://mi.mathnet.ru/eng/mmj462
  • http://mi.mathnet.ru/eng/mmj/v12/i3/p633

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Nawata S., “Givental J-Functions, Quantum Integrable Systems, AGT Relation With Surface Operator”, Adv. Theor. Math. Phys., 19:6 (2015), 1277–1338  crossref  mathscinet  zmath  isi
    2. Yu. Takayama, “Nahm's equations, quiver varieties and parabolic sheaves”, Publ. Res. Inst. Math. Sci., 52:1 (2016), 1–41  crossref  mathscinet  zmath  isi  elib  scopus
    3. A. Braverman, M. Finkelberg, H. Nakajima, “Instanton moduli spaces and $\mathcal W$-algebras”, Asterisque, 2016, no. 385, 1–126  mathscinet  isi
    4. G. Wilkin, “Moment map flows and the Hecke correspondence for quivers”, Adv. Math., 320 (2017), 730–794  crossref  mathscinet  zmath  isi  scopus
    5. Lapa M.F., Turner C., Hughes T.L., Tong D., “Hall Viscosity in the Non-Abelian Quantum Hall Matrix Model”, Phys. Rev. B, 98:7 (2018), 075133  crossref  isi  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:116
    References:31

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020