RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2012, Volume 12, Number 2, Pages 261–268 (Mi mmj465)  

This article is cited in 1 scientific paper (total in 1 paper)

Linear systems of rational curves on rational surfaces

Daniel Daiglea, Alejandro Melle-Hernándezb

a Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada K1N 6N5
b ICMAT (CSIC-UAM-UC3M-UCM) Dept. of Algebra, Facultad de Matemáticas, Universidad Complutense, 28040, Madrid, Spain

Abstract: Given a curve $C$ on a projective nonsingular rational surface $S$, over an algebraically closed field of characteristic zero, we are interested in the set $\Omega_{C}$ of linear systems $\mathbb{L}$ on $S$ satisfying $C \in \mathbb{L}$, $\dim \mathbb{L} \ge1$, and the general member of $\mathbb{L}$ is a rational curve. The main result of the paper gives a complete description of $\Omega_{C}$ and, in particular, characterizes the curves $C$ for which $\Omega_{C}$ is non empty.

Key words and phrases: rational curves, rational surfaces, linear systems, weighted cluster of singular points.

Full text: http://www.ams.org/.../abst12-2-2012.html
References: PDF file   HTML file

Bibliographic databases:
MSC: 14C20, 14J26
Received: July 19, 2011; in revised form December 29, 2011
Language:

Citation: Daniel Daigle, Alejandro Melle-Hernández, “Linear systems of rational curves on rational surfaces”, Mosc. Math. J., 12:2 (2012), 261–268

Citation in format AMSBIB
\Bibitem{DaiMel12}
\by Daniel~Daigle, Alejandro~Melle-Hern\'andez
\paper Linear systems of rational curves on rational surfaces
\jour Mosc. Math.~J.
\yr 2012
\vol 12
\issue 2
\pages 261--268
\mathnet{http://mi.mathnet.ru/mmj465}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2978755}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000309365900003}


Linking options:
  • http://mi.mathnet.ru/eng/mmj465
  • http://mi.mathnet.ru/eng/mmj/v12/i2/p261

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Daigle D., Melle-Hernandes A., “Linear Systems Associated to Unicuspidal Rational Plane Curves”, Osaka J. Math., 51:2 (2014), 481–511  mathscinet  zmath  isi  elib
  • Moscow Mathematical Journal
    Number of views:
    This page:227
    References:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020