RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2012, Volume 12, Number 2, Pages 397–411 (Mi mmj472)  

Topological relations on Witten–Kontsevich and Hodge potentials

M. E. Kazarianabc, S. K. Landocb

a Steklov Mathematical Institute RAS, 8 Gubkina Str., 119991, Moscow, Russia
b Poncelet Laboratory, Independent University of Moscow
c National Research University Higher School of Economics, 7 Vavilova Str., 117312, Moscow, Russia

Abstract: Let $\overline{\mathcal{M}}_{g;n}$ denote the moduli space of genus $g$ stable algebraic curves with $n$ marked points. It carries the Mumford cohomology classes $\kappa_i$. A homology class in $H_*(\overline{\mathcal{M}}_{g;n})$ is said to be $\kappa$-zero if the integral of any monomial in the $\kappa$-classes vanishes on it. We show that any $\kappa$-zero class implies a partial differential equation for generating series for certain intersection indices on the moduli spaces. The genus homogeneous components of the Witten–Kontsevich potential, as well as of the more general Hodge potential, which include, in addition to $\psi$-classes, intersection indices for $\lambda$-classes, are special cases of these generating series, and the well-known partial differential equations for them are instances of our general construction.

Key words and phrases: Moduli spaces, Deligne–Mumford compactification, Witten–Kontsevich potential, Hodge integrals.

Funding Agency Grant Number
Russian Foundation for Basic Research 10-01-00678-a
10-01-92104-JF-a
The first named author supported in part by the RFBR grant 10-01-00678-a and the RFBR–Japan grant 10-01-92104-JF-a. The second named author supported in part by the RFBR–Japan grant 10-01-92104-JF-a.


DOI: https://doi.org/10.17323/1609-4514-2012-12-2-397-411

Full text: http://www.ams.org/.../abst12-2-2012.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 14H10, 14H70
Received: February 23, 2011
Language:

Citation: M. E. Kazarian, S. K. Lando, “Topological relations on Witten–Kontsevich and Hodge potentials”, Mosc. Math. J., 12:2 (2012), 397–411

Citation in format AMSBIB
\Bibitem{KazLan12}
\by M.~E.~Kazarian, S.~K.~Lando
\paper Topological relations on Witten--Kontsevich and Hodge potentials
\jour Mosc. Math.~J.
\yr 2012
\vol 12
\issue 2
\pages 397--411
\mathnet{http://mi.mathnet.ru/mmj472}
\crossref{https://doi.org/10.17323/1609-4514-2012-12-2-397-411}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2978762}
\zmath{https://zbmath.org/?q=an:06126179}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000309365900010}


Linking options:
  • http://mi.mathnet.ru/eng/mmj472
  • http://mi.mathnet.ru/eng/mmj/v12/i2/p397

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Moscow Mathematical Journal
    Number of views:
    This page:311
    References:55

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020