RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2012, Volume 12, Number 4, Pages 765–769 (Mi mmj480)  

Riemannian $\mathrm{Spin}(7)$ holonomy manifold carries octonionic-Kähler structure

Dmitry V. Egorov

Ammosov Northeastern federal university, Kulakovskogo str. 48, 677000, Yakutsk, Russia

Abstract: We prove that Riemannian $\mathrm{Spin}(7)$ holonomy manifolds carry octonionic-Kähler structure.

Key words and phrases: Special holonomy, octonionic-Kähler.

DOI: https://doi.org/10.17323/1609-4514-2012-12-4-765-769

Full text: http://www.mathjournals.org/.../2012-012-004-006.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 53C25
Received: September 12, 2011
Language:

Citation: Dmitry V. Egorov, “Riemannian $\mathrm{Spin}(7)$ holonomy manifold carries octonionic-Kähler structure”, Mosc. Math. J., 12:4 (2012), 765–769

Citation in format AMSBIB
\Bibitem{Ego12}
\by Dmitry~V.~Egorov
\paper Riemannian $\mathrm{Spin}(7)$ holonomy manifold carries octonionic-K\"{a}hler structure
\jour Mosc. Math.~J.
\yr 2012
\vol 12
\issue 4
\pages 765--769
\mathnet{http://mi.mathnet.ru/mmj480}
\crossref{https://doi.org/10.17323/1609-4514-2012-12-4-765-769}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3076854}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000314341500006}


Linking options:
  • http://mi.mathnet.ru/eng/mmj480
  • http://mi.mathnet.ru/eng/mmj/v12/i4/p765

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Moscow Mathematical Journal
    Number of views:
    This page:91
    References:30
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020