RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2002, Volume 2, Number 1, Pages 127–160 (Mi mmj49)  

This article is cited in 5 scientific papers (total in 5 papers)

Orbits of braid groups on cacti

G. A. Jonesa, A. K. Zvonkinb

a University of Southampton
b Universite Bordeaux 1, Laboratoire Bordelais de Recherche en Informatique

Abstract: One of the consequences of the classification of finite simple groups is the fact that non-rigid polynomials (those with more than two finite critical values), considered as branched coverings of the sphere, have exactly three exceptional monodromy groups (one in degree 7, one in degree 13 and one in degree 15). By exceptional here we mean primitive and not equal to $S_n$ or $A_n$, where $n$ is the degree. Motivated by the problem of the topological classification of polynomials, a problem that goes back to 19th century researchers, we discuss several techniques for investigating orbits of braid groups on “cacti” (ordered sets of monodromy permutations). Applying these techniques, we provide a complete topological classification for the three exceptional cases mentioned above.

Key words and phrases: Topological classification of polynomials, monodromy groups, Braid group actions.

DOI: https://doi.org/10.17323/1609-4514-2002-2-1-127-160

Full text: http://www.ams.org/.../abst2-1-2002.html
References: PDF file   HTML file

Bibliographic databases:

MSC: Primary 30C10; Secondary 57M12, 05B25, 57M60, 20B15
Received: April 10, 2001
Language:

Citation: G. A. Jones, A. K. Zvonkin, “Orbits of braid groups on cacti”, Mosc. Math. J., 2:1 (2002), 127–160

Citation in format AMSBIB
\Bibitem{JonZvo02}
\by G.~A.~Jones, A.~K.~Zvonkin
\paper Orbits of braid groups on cacti
\jour Mosc. Math.~J.
\yr 2002
\vol 2
\issue 1
\pages 127--160
\mathnet{http://mi.mathnet.ru/mmj49}
\crossref{https://doi.org/10.17323/1609-4514-2002-2-1-127-160}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1900588}
\zmath{https://zbmath.org/?q=an:1008.20030}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000208587700008}
\elib{http://elibrary.ru/item.asp?id=8379099}


Linking options:
  • http://mi.mathnet.ru/eng/mmj49
  • http://mi.mathnet.ru/eng/mmj/v2/i1/p127

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Jones G.A., “Cyclic regular subgroups of primitive permutation groups”, Journal of Group Theory, 5:4 (2002), 403–407  crossref  mathscinet  zmath  isi
    2. Kwak J.H., Lee J., Mednykh A., “Coverings, enumeration and Hurwitz problems”, Applications of Group Theory to Combinatorics, 2008, 71–107  crossref  mathscinet  zmath  isi
    3. Mueller P., “Permutation Groups with a Cyclic Two-Orbits Subgroup and Monodromy Groups of Laurent Polynomials”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 12:2 (2013), 369–438  mathscinet  zmath  isi
    4. James A., Magaard K., Shpectorov S., “the Lift Invariant Distinguishes Components of Hurwitz Spaces For a(5)”, Proc. Amer. Math. Soc., 143:4 (2015), PII S0002-9939(2014)12185-X, 1377–1390  crossref  mathscinet  zmath  isi
    5. J. Math. Sci. (N. Y.), 226:5 (2017), 548–560  mathnet  crossref  mathscinet
  • Moscow Mathematical Journal
    Number of views:
    This page:157
    References:42

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020